L ogical object tagging ar chitecture
Owens, Howard Dewey _
ProQuest Dissertations and Theses; 1997; ProQuest Dissertations & Theses Global

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 NorthiZeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

er. Further reproduction prohibited without permissionyww.manaraa.con

Copyright
by

Howard Dewey Owens

er. Further reproduction prohibited without permissionyw\w.manaraa.com

Logical Object Tagging Architecture

Approved by
Dissertation Comittee:

/}w oA

Dar o forpatsy”
/>0 0
Vigty Feomar Loy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Logical Object Tagging Architecture

by

Howard Dewey Owens, B.S, M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 1997

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

UMI Number: 9822681

UMI Microform 9822681
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

er. Further reproduction prohibited without permissiony\w.manaraa.cor

In memory of Herman Dewey Owens

er. Further reproduction prohibited without permissionyww.manaraa.com

Acknowledgments

First I must thank Dr. Baxter F. Womack for his support and advise since the
beginning of my work at The University. Next I would like to thank Dr. Joseph Rahmeh
for serving as co-advisor and helping so much to improve this research. I would also
like to single out Dr. Mario J. Gonzalez for his support and advise along the way and
for serving as the chairman of my qualifying committee and co-author of my paper.
Finally, I would like to thank Dr.s Joydeep Ghosh, Vijay Garg, and Martin Wong for
serving on the dissertation committee and assisting to improve the results.

I must also thank several other people for assistance towards this dissertation.
First [thank Quentin Barnes of Motorola. Although we have never met, Quentin has
provided consistent and generous support by answering all manner of questions and
supplying software for my research. Michael Cruess allowed me time and resources at
Motorola to complete this dissertation. Jean-Paul Carcenac, also of Motorola, provided
replacement hardware when mine failed. Without his generous loan my research could
not have been completed. Jon Gettinger, of Pure Software, provided long loans of
Purify before funding could be found to purchase the product. Tomas Evensen, of Diab
Data, provided a C++ compiler. Dr. Susan Barber, of The University of Texas, read an
early draft of the paper presented in Chapter 2 and provided helpful comments.

Most importantly, I must thank family and especially my parents. What they
could not teach me in my formal education, they more then made up for by teaching,
and setting a good example of, honesty, integrity, perseverance, and patience. Without
these qualities, along with a healthy dose of common sense and the will to succeed, it
would have been impossible to come this far.

Finally, [would like to thank H. G. Wells for his great stories which have helped
keep me sane during these trying times and to director Erle C. Kenton for Lota, the

panther woman, in Island of Lost Souls.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

Logical Object Tagging Architecture

Publication No.

Howard Dewey Owens, Ph.D.

The University of Texas at Austin, 1997

Supervisors: Baxter F. Womack and

Joseph Rahmeh

The Logical Object Tagging Architecture is presented. The major contribution
of this architecture is features which allow compilers to control access to data in
object-oriented software systems with minimum performance degradation. Compilers
can limit data access to the objects that own them while supporting fine grained (small)
objects.

Unlike previous systems which support objects by tagging pointers to objects
with access rights information, this new architecture tags the data with object
ownership information. In effect, this new architecture does not limit the address an
object may generate (address space management) but limits the memory locations
which it can access (storage space management). In addition, previous object-oriented
systems provided a complete system secutity model requiring new operating systems
with object support from the ground up including support for individual protection
domains for each object. This new architecture provides the ability to enhance a
traditional process based system to allow compilers to manage protection domains of
objects within a process.

Enforcing object boundaries in object-oriented software systems can eliminate

vi

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

important types of defects across several classes of software defects. In addition, the
tagging mechanism in this new architecture can be used to eliminate other important
types of software defects by catching memory accesses which are known to be faulty.

The defect detection tool Purify® is used to provide a survey of software defects.
This survey is used to motivate the new architecture and to provide a base of
comparison. After the architecture is developed it is analyzed by using a cycle accurate
simulator for the 88110 processor. This simulator is modified with instrumentation and
features which allow penalties to be extracted for the new architecture when it is

implemented with a base 88110 implementation.

vii

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

Table Of Contents

Acknowledgmentsttt ittt et e e e v
ADBSITactot e et et et et e e vi
Table Of Contentsottt ittt ieeieinearaenanann viii
Chapter L. Introductionottt ittt ieenenannn 1
1.1.The Software Problem i, 2
1.2. Previous Attempts at Solutionccoiieiiiinennnennanan.. 3
1.3.Ideaforanewarchitecturettt 4
l4. Whatto Expect.ttt i i it iinieeeannnn 5
Chapter 2. The Software Problem i, 6
2.1 Introduction e i e e 6
2.2. Softwareerrorsand Purify L i e 9
2.2.1. Where software errorsarefound. i, 9
2.2.2. Software errors and MemMOIY 8CCESS . -+« v v v v vevneevennnennennan 10
2.2.3. Purify: making memory access observable...................... 10
2.2.4. Memory access eITOT LYPeS . « ¢ o oot v i venoeneneenncraneannns 11
2.2.5. Interpreting output from Purify. o oL, 12
23.Experimentationi i i i e e i 16
23.1.Methodology.ciiiiiii i i i i e 16
23.2.Examplesessionottt ittt 17
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

233.ExXperimentsc.ooiiiietiiiietiiet ettt 19

24.Results . ..o e e ettt e 24
24.1.Dynamicerrordata.............c.iiiiiiiiiiii it 25
242 Staticerrordata.t i e i 26
243. Analysisofdata.......... i 27

25.Comparing Cto CH+ .o vvi ittt ittt ittt et ee it 28

2.6. Summaryconclusions. i i i e 31

Chapter3. Previous Workc.ciiiiii ittt iinenannnns 32

3.1. Multi-threaded Architecture.o i, 32
B HEP. .o e et e et 33

3.2. Capability-Based Systemsttt iiiiiiinianrnnnnn 35
321 Plessey 250 . ..ot e e et et e 37
322 IBMSystem/38. e et e e 38
3.2.3. M-Machine Guarded Pointers.ot 40

3.3. Object-based Systems.ovirerineneneenenneneneenennnann 42
33 L IAPXA32 . . e e e i 43
332.MUTABOR. ... ittt 45
T 0 2 47

3.4. Software Defect Detection Schemes 49
D B o 1 1 28O 50
342. 8afe-C. .o e e et e e e 51

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

Chapter 4. Logical Object Tagging Architecture. 53

41.LOTAReferencecco ittt iiiieeneannn, 53
411 OVeIVIEW. . . ottt ittt i it it e e et 53
4.12. ProgrammingModel......... i, 57
4.1.3. Addressing Modes and Instruction Set Summary................. 58
4.14. Instructionand DataCaches................................. 60
4.1.5. Memory Orgamization.coouuiiiiinnennnneannnn. 64

4.2. Programming Considerations.ccotiiteniiiinenennnn. 65
42.1.Domain Crossingccoiiiiiiiininineninneiiianennannn 65
42.2.StackManagement ittt it 67
423.HeapManagementcoiiiiiieiiennernnnannnnnnn 71

43.Qualitative AnalysisScoituninininineiiiennennnnnananns 71
43.1.Defect Detection.ooitieiiinin i ie i iaiieennnnnn 71
43.2.Domain Crossingcoiveiiivninrtinunnennnnennannnnn 74
4.33. Abstract Data Type Implementation. 76
43.4.RESOUICES . . o iiiitiiitiiieenteeeeeeeaneeananaeenennnnn 76
43.5.StackManagement i i it it 77
436.Heapot e e e ettt e 78
43.7.8implicityot e ettt 78

44.Segmented Alternativettt it e i i i 79
4.4.1.80386 Processorooviiin i ittt et e 80

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

4.4.2. Modified 80386 Segmented Architecture. 82

45. Information Flow i i i i e 86
4.5.1.Von Neumann Computerccouiieneeeneenencnnnnnn 87
4.52. TagInformation Flow. 87

Chapter 5. Analysiscouiniiiiii it i i et 89

S.1. Implementation of LOTA. i i, 89
2 B R 1T = 89
2 7 () 5 91
S5.13.Cost ARalysiS . .o voiiii i it e e e 100

5.2 . EXperimentscoiuimiitiiit ittt ittt e, 101
5.2.1.TheSimulator- XSim. o ittt 101
S5.2.2. Measurements.oovititit i it e 104
5.23.Software Testedcoouiiiiiiiiiniinnnnnnannnnn. 116
5.24. Example Session.t i i 118

S53.Resultsand Analysis.coovniitiiniie it ettt 119
S53.1.TagTransfersottt iineeeenianenens 119
53.2.Domain Crossingcvcvueieieninennenenncnnenannennns 123
53.3.8tack Space. . ..ttt i e i i ittt 125
534.Heap Spacecoiiuiiiiiiiiiiiiii it 127
53.5.In-line Domain Crossing.cooviiiiiiinnnnnennn.. 130
S53.6. SUMMANY. ..ottt ittt ittt ittt 134

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

Chapter 6. Refinement ittt 138

6.1. Tighteningthe Bounds i, 138
6.1.1.Cache. e et 138
6.1.2.D0mains i i et 140

6.2. Improving Performance i, 142
62 1. TagTransferottt 142
6.22. Stack Space. ooi it i e e e e 142

6.3. Improving Security Against Defects 147
63.1.DomainEntryPoints. i 148
632.DomainReturn il 148

64.SystemIssues i 149
64.1.DiskTransfer, 149
6.42. TagMemorycoi ittt it i e ieeennnn 150

6.5. Applicationof Tagsccveiieiiiiiiiiiiiiinnnnnn.. 152
6.5.1. Uninitialized Read Tags oL, 152
6.52. Boundary Conditionccivieitiinennrnenennnnnans 152

6.6. Alternative Applicationsfor LOTA iiiiiiit., 153
6.6.1.Second LevelCache oiiiiiiiiiiiL. 153
6.6.2. Smart Card Memory Protectionccoiiiiennn... 157

Chapter 7. Summary and Conclusions. coiiiiineiinienennnnnn. 160

7.1. The Software Problemo i iiiiin... 160

Xii

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

7.2. Logical Object Tagging Architecture. 161

73. Future Directionscccuiiiiriiinineiennenneennnnannn 162
T4 .ConClusionottt ittt ettt it e 163
Appendix A. Full Text of Electronic Correspondence. 164
Appendix B. Additional Data for Purify Experiments. 175
Appendix C. XSim Experimental Data 182
Bibliography. i e e e 242
VT A L e e e e e e e e e e 247
Xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Chapter 1
Introduction

A recent discussion in the Internet news group comp.arch was on the subject of
array index checking. It was generally agreed that out-of-bounds array accesses are a
problem and a problem which should never occur in released software systems. The
method to eradicate this problem was a point of heated debate. The perceived problem
was blamed on hardware, the user, and everything in-between. Each participant in the
discussion had his/her own perception of where the problem is and therefore where a
solution should be applied.

One potential solution is to use memory segments for each array. Memory
segments have their start and end addresses clearly represented by registers in the
processor. [t was noted that this solution caused extra pressure on the register resources
of the processor and that a bounds check must be made for each array access [A.1 on
page 164]. The compiler might be able to optimize some of these checks away, but
many expressions used for array index values are much too complicated for a
correctness proof within the compiler {A.1].

Another potential solution for C programs is to use a preprocessor to convert the
source code into a safe version of the program such as in the system Safe-C [1].
Although it was noted that C made safe is very inefficient [A.2], it was still used as an
argument against putting special checking features in hardware in the event that such
systems become efficient over time making the extra hardware obsolete [A.3].

A common and reoccurring theme in the discussion was the possibility of a
feature, either hardware or software, that could be turned on during program
debugging and then turned off for final release of the software. The benefit of this
method is that inefficiencies are only tolerated during program development while the

released software receives the benefit of more reliable software without paying the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

2

penalty of less efficient software. It was noted however, that software testing is never
complete and the possibility of defects always exists [A.4,A.5]. Chapter 2
demonstrates the problem of software defects, including out-of-bounds array accesses,

escaping the testing process and finding their way into released software systems.

1.1 The Software Problem

Out-of-bounds array indexing is only one piece of the defect detection and
correction part of the software problem. In the larger picture, defect detection is part
of the software life cycle. The “Software Problem” is that the software life cycle is too
expensive, too difficult to predict, and too hard to manage. When the software life cycle
is divided into the popular categories of analysis, design, implementation, testing, and
maintenance it is evident that defect detection and correction covers all phases of the
software life cycle. There are tools which attempt to detect defects while a program is
running, but these tools have design constraints which make their operation too
inefficient to be used by the customer.

One obvious way to eliminate the part of the problem which is defect detection
and correction is to eliminate the source of the defects in the first place. There are
computer languages, such as forth and pascal, which have checks against many
defects either at compile time or with run time software. But it would be impractical
to require all programmers everywhere to use a given language system to declare the
defect detection and correction part of the software problem solved. First, solutions
cannot apply to part of the problem without considering the entire software life cycle.
Second, it is market forces which tend to promote a computer language. These market
forces have promoted C to a prominent position. C is a high level programming
language which not only increases the efficiency of implementing software (the
solution to a problem), but compiled code is also very run time efficient. Part of its run
time efficiency is derived from pointer manipulation and the lack of automatic array

bounds checking.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

3

Object-oriented analysis and design is a methodology to improve the respective
parts of the software life cycle, often referred to as the object-oriented software life
cycle. The C++ programming language allows the object-oriented analysis and design
to be carried over into implementation. The major contribution to the popularity of
C++ is that it maintains the familiarity of syntax with C and much of C’s efficiency
while at the same time offering features to allow object-oriented programming. The
object-oriented life cycle is a unifying paradigm which allows objects to be identified
in the problem domain during analysis, solution objects to be identified during design,
and the possibility of additional objects to be applied during implementation of the
solution. In fact, it would be optimal if the objects of each phase could be expressed in
the implementation language [2].

For this research two facts are important, object-oriented programming has
become popular, and C++ is the dominant object-oriented programming language.
Given these facts this research is concerned with the structure of object-oriented
software and the effectiveness of C++ as an implementation language with respect to
the software life cycle. In particular, the division of data and the routines that
manipulate that data lends itself to protection domains between objects. Such
protection between objects can eliminate many software defects and bound many

others.

1.2 Previous Attempts at Solution

There have been several attempts at building more reliable software systems.
Capability-based systems divide programs into procedures and data segments and limit
a procedure’s ability to address anything outside of its own data segments. Object-
oriented systems combine the segmented data and capability features with the natural
structure of objects. Capability-based and object-oriented systems can be designed in
software to use traditional computer hardware or they can be designed to be supported

directly in hardware. A common theme of these systems is the attempt to control the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

4

program addresses generated by a procedure or object within a program to access data.
These program addresses are called logical or virtual addresses because they are
typically translated by the hardware and operating system into physical storage
addresses.

This research will present a survey of several of the important systems which
have been presented over time in the area of capability-based addressing and object-
oriented hardware architecture. In addition to these important systems the survey will

cover other systems designed to aid in the detection of software defects at run time.

1.3 Idea for a new architecture

[t is observed that object-oriented software does present favorable organization
of data in software systems and that it does make sense to provide protection between
objects at run time in order to contain important types of software defects. Such
systems have not been successful in commercial terms and it is often shown that
inefficient implementations are the reason for such systems failing to gain popularity.
Time-shared operating systems have long had protection between programs sharing
the system at any given moment. The protection mechanisms commonly used in time-
shared systems are too inefficient to apply to protection within a program at the object
level.

It is observed that in every case reported to date protection implies limiting the
addresses a program is allowed to generate. These are program addresses, or virtual
addresses, and as such must be checked before the address is translated by hardware.
Checking program addresses before translation is referred to as address space
management. This type of address management takes place within the processor. Since
processor implementation is limited by the resources available (transistors) it is
difficult to justify increased resources.

The question for this research is: can a mechanism be offered to processes within

traditional computer systems which allows protection between objects of a given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

5

program while being efficient enough to use during the entire software life cycle? It is
proposed here to tag physical memory with object ownership. The basic idea is to
move the resources required to perform protection to the storage side of the memory
address translation hardware. Physical memory is tagged with the identification of the
object which owns it. This contrasts with previous systems which tag a pointer (i.e. the
logical address) with permissions for accessing the corresponding memory. The
proposed tags can be transferred into the cache of the processor as part of normal data
movement. A data access can then be checked for ownership by the currently executing
object within the cache. Since the check is in the cache, which is already a tagged
mechanism, it is hoped that checking for object ownership can proceed at cache
speeds. This research will explore the implementation of such an architecture and

analyze the result.

1.4 What to Expect

This research explores the software problem, including the array indexing
problem, in C and C++ software systems. Chapter 2 presents previous work in
exposing the problem associated with defects in released software systems; it also
presents the results and analysis for an original survey of such defects. Chapter 3
presents a survey of previous software and hardware solutions to many of the software
problems and includes several of the more interesting alternatives. Chapter 4 develops
the architecture for this research while Chapter 5 analyzes a possible implementation.
Chapter 6 will revisit the architecture in an attempt to refine it in light of the analysis.

It is claimed that this new architecture will provide for the efficient run time
protection of objects within a traditional process. Such protection will bound the
defects in software to object boundaries. In addition, other important software defects
can be detected by the tagging mechanism. The architecture is efficient enough to be

used during the entire software life cycle.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

Chapter 2

The Software Problem

Perfect quality represents 100% conformance to specifications. Complex
systems make it difficult and expensive to assure conformance to specifications by post
production testing alone. As a result quality assurance processes are moving upstream
in the life cycle, i.e., statistical process control and design for manufacturability. These
processes try to avoid defects or make it easier to detect defects. In software systems
this move to upstream processes for quality control is still in its early stages. As with
more traditional manufacturing systems, maturity of the software design and
development process will dramatically reduce the cost of attaining conformance to
specifications. Even so, it is difficult to imagine a “bug free” complex software system.
Downstream processes will continue to play an important part in the efforts to achieve
defect-free software. This chapter presents results of a survey which used the defect
detection tool Purify to examine off-the-shelf software products in order to show that
software errors continue to escape testing and threaten field failures [3]. Errors
detected are compiled and presented. All data were collected on C and C++ programs
running in a UNIX operating system environment. The information contained in this
chapter was presented in [3] but is expanded here and contains a few minor

corrections!.

2.1 Introduction
The software life cycle can be divided into two parts: development and
maintenance. Development has been broadly divided into analysis and design,

implementation, and test processes [4,5]. Most efforts in software engineering have

1. © 1996 IEEE. Reprinted, with permission, from Proceedings of the International Confer-
ence on Software Maintenance, Monterrey, CA, November, 1996, pp 104-113.

6

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

7

been directed toward these development processes. This is not surprising. Borrowing
from experience with more traditional manufacturing systems, it is accepted that defect
prevention saves money as compared to defect correction as a means to achieve
conformance to specifications [6].

In order to assess the savings of defect prevention over a software product life
cycle, data are needed for the cost of attaining quality through defect prevention. The
cost to fix defects is the cost of not attaining quality. For this cost data are available [7].
However, for the cost of attaining quality through defect prevention, there is very little
data. The lack of tracking metrics in the software development process is a major
contributor to this deficiency. There have been efforts to model the cost of software
quality based on the Capability Maturity Model [8]. However, it is estimated that
ninety percent of software organizations today are at the capability level of software
development described as ad hoc, undefined and chaotic [8]. Organizations at this low
capability level experience a large percentage of cost during the life cycle associated
with correcting software defects.

In some ways the software life cycle is not similar to product life cycles of
traditional manufacturing systems. While a car may wear out, a program will not. For
a car, maintenance is required to keep it operating within design specifications.
Maintenance of software is quite different. It is estimated that sixty to seventy percent
of the entire software life cycle is devoted to maintenance [4,9]. However, upon closer
examination, software maintenance is found to be divided into changes to meet user
requirements, enhancement changes, and bug fixes [4]. The inevitable part of software
maintenance is evolutionary changes. Fixing bugs is the only part of maintenance
which has the potential to be completely eliminated.

The primary quality factor to the user is conformance to specifications [9]. As
the requirements change other quality factors become apparent. These include
robustness and extendibility. Internal quality factors such as modularity and readability
become very important to meet the quality factors visible to the user. The goal of these

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapnw.manaraa.com

8

internal qualities is to make possible the user visible qualities in a timely fashion in the
face of evolving specifications. The combined goal of user visible and internal qualities
is to reduce the overall costs associated with the software life cycle by reducing
maintenance costs [10]. Software defects are the most ominous trait visible to the user.

This chapter presents the results of research using a tool, Purify®, to discover
symptoms of software defects, namely memory access errors, in released software
systems. These memory access errors are classified and compiled. Although memory
access errors do not include all types of logic errors, they do include most memory
overlay errors which were previously reported as the most difficult to analyze and
correct and which had the greatest impact on system availability [11]. In addition,
memory access errors include those errors which are least likely to be caught during
testing. This is true probably because testing primarily focuses on conformity to
specification. Even though a thorough specification may include code coverage
requirements for testing and expected behavior in the face of out-of-bounds inputs, a
defect usually must manifest itself as a deviation from specification to be caught in
testing. Memory access errors are an important type of defect which continue to escape
testing yet maintain a strong potential for manifesting themselves as deviations from
the specification.

All data were collected on Sun SPARC workstations running the UNIX
operating system version SunOS 4.1.3. This was the first combination of hardware and
operating system software on which Purify was available. The programs examined are
all C and C++ programs. Only memory access errors from each software package and
their respective libraries are reported. Memory access errors from operating system
library code were intentionally excluded to avoid attributing defects to the delivered

software package.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

2.2 Software errors and Purify

2.2.1 Where software errors are found

Software errors are found in all phases of the software life cycle. Of course, the
earlier they are found the less costly they are to fix. When a software error is found
during one of the development processes it is often called an internal error because the
error was found internal to the organization developing the product.

Once a product has been released it becomes more costly to correct errors. The
cost comes from finding a fix, testing the fix, releasing the new version and updating
any affected documentation. When a software error is found after release it is often
called an external error because the error was visible external to the organization
developing the product.

Sullivan and Chillarege performed excellent studies of the IBM RETAIN
(REmote Technical Assistance Information Network) database of field failures and
corrective actions [11,12]. In their studies several error types were grouped together
and classified as overlay errors. Overlay errors are defined as any error which results
in memory corruption. Typical error types classified as overlay errors are:

+ Allocation Management: A module releases a memory region before it has finished
using it. This error is also referred to as the dangling pointer error.

- Copying Overrun: A memory copy operation overruns the destination buffer.

- Pointer Management: A pointer variable is corrupted causing unrelated memory to
be over-written.

Just these three types of errors accounted for nineteen to twenty seven percent of all

errors sampled for three products [12].

Surveys such as the one done by Sullivan and Chillarege used pre-existing
databases created by field service divisions to track problems, fixes, and release
information. The data reported here are different in the fact that they were actively
sought out as opposed to extracted from a pre-existing database even though both types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.cor

10
of databases are collections of external errors.

2.2.2 Software errors and memory access

One of the biggest problems associated with locating a software error is finding
a symptom to observe. Consider the simple example ¢ = a + b where the variable a
was unintentionally left uninitialized. If this statement is part of a large module it may
take much time and effort to find and fix if only the module input and output values are
observable.

Now consider the same statement, ¢ = a + b with variable a uninitialized, in
terms of memory access. The error is that variable a is used before it is initialized. In
terms of memory access the memory location holding variable a is read (used) before
it is written (initialized). A read before write memory access is defined as an
uninitialized memory read error.

If memory accesses could be made visible it would open up the opportunity to
capture the use of uninitialized variables. It would also make possible the capture of
many of the overlay errors of the type allocation management, copying overrun, and

pointer management identified earlier.

2.2.3 Purify: making memory access observable

Purify is a software tool which assists a programmer in locating software errors
by making memory accesses observable. Purify does this by replacing, at link time, all
memory access instructions with a jump to one of its own subroutines to check the
memory access, record profiling information, and perform the access. In addition,
Purify intercepts calls to the UNIX subroutines malloc and free to keep track of
memory allocated to a program. Building a software application with Purify results in
a new version which has additional error checking code and is therefore referred to as
the instrumented version.

Purify allocates memory to hold two state bits for each byte of program memory.

Each byte of program memory can therefore be in one of four states and each state

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

11

defines the type of memory access considered valid. The three states used by Purify

and their valid memory accesses are defined as follows:

1. unallocated: The corresponding byte has not been allocated and any access is in

€rror.

2. allocated: The corresponding byte has been allocated but not initialized. A read
access is an error while a write access is valid. A write access will change the state to
initialized.

3. initialized: The corresponding byte has been allocated and initialized. All access

are valid.

The experiments for this work included use of Purify versions 1.1, 2.0 and 2.1.
The latter versions tended to make error reports more usable in ways such as batch
reporting of errors at the end of a run with redundant information removed. Programs
instrumented with Purify consumed approximately five times their normal CPU time.
Starting with Purify version 3.0 the tool has stressed an interactive graphical interface
which will make surveys such as this work more difficult. More detailed information
on the technical details of Purify is found in [13] and more information on the product
Purify can be found in the user’s guide [14].

2.2.4 Memory access error types

As Purify monitors memory accesses and calls to malloc and free it updates the
state bits accordingly. When an access is not considered valid Purify reports a memory
access error. Five types of memory access errors were compiled for this work. These

are described in the following sections.

2.24.1 Uninitialized memory read error (umr). A program variable was read
before it was initialized. This error was found to occur with the most frequency. This is
partially explained by how UNIX C and C++ programmers expect uninitialized global data
to be filled with zeros.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

12

2.24.2 Array bounds read error (abr). A memory location in the unallocated state
and adjacent to an array was read. Purify surrounds arrays with buffer memory in the

unallocated state in order to catch array accesses which go out of bounds.

2.2.4.3 Array bounds write error (abw) . A memory location in the unallocated
state and adjacent to an array was written. Programs which are not instrumented with
Purify may behave differently than their instrumented counterparts because abw errors
will overwrite adjacent data. The buffer memory around arrays in instrumented
versions provide a measure of protection from overwriting. Without such tools as

Purify these types of errors are often very difficult to find.

2.24.4 Free memory read error (fmr). An unallocated memory location was read.
This programming error was observed in this research to be common. One observed
example was in the management of a linked list of data structures. In a linked list each
element contains a pointer to the next element in the list. When elements of such a list
are de-allocated the programmer sometimes de-allocates an element before reading the

link to the next element.

2.24.5 Free memory write error (fmw). An unallocated memory location was

written.

2.2.5 Interpreting output from Purify

2.2.5.1 Example output. To illustrate the error categories introduced earlier,

consider the program in Example 1. Line numbers have been added for convenience.

Example 1.

1 main(){

2 int a,b,c;
3 a=1l;

4 c=a+b;

5 }

Figure 1 shows the output from Purify. Purify reports an uninitialized memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\www.manaraa.cormn

13

Purify (umr): uninitialized memory

read:
* This is occurring while in:
main [line 4, main.c,
pc=0x1b338]
start [crt0.0, pc=0x2064]
* Reading 4 bytes from 0xf7ffeea8 on
the stack.

* This is local variable “b” in
function main.

Figure 1 Purify output for simple umr error.

read error, umr, on line 4 as emphasized in boldface. The error reported is a umr error

due to the fact that the memory area used to store b was read before it was written.

2.2.5.2 Differentiating system errors. Application software is made up of its own
source code plus any library routines supplied by the operating system. Consider the
program in Example 2.

Example 2.

1 #include <stdio.h>
2 main(){

3 char c[10];

4 printf(“%s”,c);
5

This trivial program calls the operating system supplied library function prinzf.
The output from Purify is shown in Figure 2. Notice that Purify reports an uninitialized
memory read error as indicated in the boldface line. Also, the line number of the
offending source statement is missing. Library routines are most likely to have
minimum symbolic information available. Purify does what it can by reporting the
program module and program counter.

The fact that Purify omits line numbers was relied on to identify which errors
were from system supplied libraries and which were from application source code.

Errors from the system routines were excluded when compiling the results of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

14

Purify (umr): uninitialized memory

read:

* This is occurring while in:
_doprnt [doprnt.o,
pc=0x£753829¢c]

printf (printf.o,
pc=0x£7546678]

main [line 4, example2.c,
pc=0x2655c]

start [crt0.0, pc=0x2064]
* Reading 1 byte from Oxf7ffeea4 on
the stack.

* This is local variable “c” in
function main.

Figure 2 Purify report of system library.
work.

2.2.5.3 Call stack. Example 3 contains a program which performs the same

calculation as in Example 1 except that it contains a main function and two levels of

subroutines.
Example 3.
1 main(){
2 void funl(int*,int*);
3 int a,b;
4 a=l;
5 funl(&a,&b);
6 }
7 wvoid funl(int* a, int* b){
8 void fun2(int*,int*);
9 fun2(a,b);
10 }
11 void fun2(int* a, int* b){
12 int c;
13 c=*a+*b;
14)

The main routine calls funl which in turn calls fiun2 to perform the statement
¢ = a+ b. The error is clearly in main where the variable b is not initialized. The
symptom of the error is the uninitialized memory read error while reading the variable

b in fun2. Figure 3 shows the report from Purify for this error. The lines in boldface

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

15

Purify (umr): uninitialized memory

read:
* This is occurring while in:
fun2 fline 13, example3.c,
pc=0x1b438]
funl (line 9, example3.c,
pc=0x1lb3e4]
main [line 5, example3.c,
pc=0x1b384]
start [crt0.0, pc=0x206c]
* Reading 4 bytes from Oxf7ffeea8 on
the stack.

* This is 8 bytes below frame
pointer in function main.

Figure 3 Purify call stack example.

show how Purify reports the subroutine calling sequence. From top to bottom it shows
that fun2 was called by fun! which in turn was called by main. This information may
prove useful in determining the program error which leads to the memory access error.
In this case it would lead the programmer to the function main where the variable b
was not initialized.

Now consider the program in Example 4 which differs from Example 3 only

slightly.
Example 4.
1 main(){
2 void funl();
3 funl();
4 }
5 wvoid funl(){
6 void fun2(int¥,intx);
7 int a,b;
8 a=1;
9 fun2(&a,&b);
10 }
11 void fun2(int* a, int* b)({
12 int c;
13 c=*a+*b;
14 }

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

16

In this example fun! declares a and b but only initializes a. This is the root of the
error. However, the symptom of the error, like in Example 3, is the uninitialized mem-

ory read in fun2.The report from Purify is shown in Figure 4.

Purify (umr): uninitialized memory

read:

* This is occurring while in:

fun2 [line 13, exampled.c,
pc=0x1b408]

funl {line 9, exampled.c,
pc=0x1b3b4]

main (line 3, example4.c,
pc=0xlb36¢c]

start [crt0.0, pc=0x206cC]

* Reading 4 bytes from 0xf7ffee48 on
the stack.

* This is local variable “b” in
function funl.

Figure 4 Purify call stack variation.

The programming errors in Examples 3 and 4 are the same: variable b is left
uninitialized. However, in Example 3 it is main and in Example 4 it is fun/, which
make this error. As such they are two different programming errors. The symptom of
these two programming errors which Purify detects is the memory access errorin fun2.
In this body of work for a given program the calling sequence is not considered while

totaling the access errors.

2.3 Experimentation

2.3.1 Methodology

Purify supports a limited number of hardware platforms, operating systems, and
programming languages. The supported combination of platform and operating system
most readily available for this work was Sun SPARC workstations running the SunOS
4.1.3 version of UNIX. The languages supported are C and C++ which are of particular
interest for this work due to their popularity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

17

A total of fifteen software packages were tested as shown in Table 2 in Appendix
B on page 175. These packages contain thirty one independent programs of which
sixteen are C++ programs, fourteen are C programs, and one program is of mixed C
and C++. Source code was acquired for each of these packages so that Purify could
instrument the code. To assist Purify in identifying line numbers of memory access
errors, each package was compiled with compiler options to maximize symbolic
information.

Instrumented programs were tested by running them under conditions to which
they should be able to exactly perform their tasks according to their specifications. No

abnormal conditions were used to stress an instrumented program under test.

2.3.2 Example session

This section presents three example program fragments which contain memory
access errors. These program fragments are excerpts from software used for initial

experience with Purify for this work.

2.3.2.1 Free memory read error. Consider the program fragment in Example 5.

Example 5.
for(p=first; p != nil; p=p->next) {
free(p);
}

In this example program excerpt, a linked list of elements is freed returning the stor-
age space back to the free memory storage allocator. On each pass through the loop an
element of the list is freed and then the next element pointer is retrieved. Purify
reports a free memory read error on each pass through the loop in this example. The
reason for this is that the next element pointer is retrieved from the current element
after it has already been freed.

The designer of this software did not consider this an error. The reason given is

that calling the UNIX library subroutine free only returns the storage to the free

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

18

memory pool. The memory itself is not made inaccessible nor are the values stored in
the memory corrupted. The memory access to retrieve the pointer to the next item in
the list, therefore, seems safe. However, this is a dangerous programming practice
which may adversely affect future maintenance requirements. Even within the UNIX
environment, more UNIX implementations are becoming multi-threaded while
hardware is more commonly multiprocessor [15]. These evolutionary changes may

invalidate these implementation dependent assumptions about free store.

2.3.2.2 Array bounds write error. Consider the code fragment in Example 6.
Example 6.
for(i=0; i<MAX; i++) {
via[i] = BLOCKED;
}

In this code excerpt a loop is used to initialize each element in an array with the con-
stant BLOCKED. Unfortunately, the array is dynamically sized with either two or
three elements. MAX is a constant defined to be three. Therefore, when a run of the
software dynamically allocates a two element array for the problem, the above code
fragment will write off the end of the array by one location. Purify reports an array
bounds write error. It was determined that the constant MAX was left over from the

prototype implementation of the software and remained only due to an oversight.

2.3.2.3 Array bounds read error. Consider the code fragment in Example 7.

Example 7.

for(i=0; i<MAX; i++) {
b = ¢c[i];
d = c[i+l];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

19

In this code excerpt an array bounds is overstepped by one element in the statement
d = c[i + 1] on the last iteration through the loop. The code later tests for this case
and allows for it. The resulting calculation is correct and most UNIX programmers
assume that reading one value past the end of an array is safe. This is true when the
byte past the array is still accessible to the program but may be a dangerous assump-

tion for future maintenance requirements. Purify reported an array bounds read error.

2.3.3 Experiments
The following ten sections describe the experiments for the fifteen software

packages. Six of the GNU packages were part of the same experiment and are reported

together as GNU tools.

2.33.1 Custom Cell Synthesizer. The Custom Cell Synthesizer (CCS) is an
Microelectronic and Computer Technology Corporation (MCC) Computer Aided
Design tool set. It takes as input a sized transistor network listing for a cell. The tools
produce a symbolic physical layout for a CMOS circuit. The CCS tool set is a research
prototype and the project developing this tool set is no longer active. The final version
of CCS, CCS Version 2.5, was used for this research. (Refer to the CCS design
specification for more information about CCS [16].)

CCS comes in two parts, the proprietary CCS tool set and the required public
domain support programs and libraries. Both parts were installed according to the
installation manual [17]. The source code was then instrumented with Purify.

The CCS release comes with an example workshop directory, and instructions
on how to run examples are described in the user’s guide [18]. After a few simple setup

steps the commands shown in Example 8 were used to test CCS.

Example 8.
make
make CCS/adder_4row.log
make CCS/adder_4row.xyclog

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

20

The result of running these commands is to invoke a set of tools in the CCS tool suite
to compute a cell layout from its netlist. The tools invoked include the instrumented
versions of the programs GateToGate, XCellCompact, XCellPlacer, XCellRouter,

placement, and router.

2.33.2 GNU tools. The Free Software Foundation’s GNU tools are an excellent

source of software for this type of research. It is a common practice to retrieve

electronically GNU software packages from one of the repositories of GNU software.

Each of these software packages is released as a single composite file which has been

compressed to save space. Each time a software package is retrieved several steps must

be followed to compile and install the package. These steps are repeated for each

package. In general these steps include:

- Running zcar to uncompress the file.

+ Using trar to break the composite file into its components.

* Running make to compile and install the package.

- make performs calls to several other utilities to perform its work including the
compiler, sed, and awk.

For this research the GNU software packages gzip, tar, make, gcc, sed and awk
were compiled and instrumented with Purify. The GNU debugger gdb was then
imported and compiled using these instrumented versions of tools. The compiler used
was an instrumented version of the GNU compiler consisting of the compiler driver
gec, the code generator cc/ and the compiler preprocessor cpp.

During the build of gdb several of the instrumented GNU tools were executed
multiple times as demonstrated in Table 1.The result was to generate, edit, compile,

and link the individual source code files into the program gdb.

Program Runs
make 14

Table 1: Execution Runs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

21

Program Runs
gee 143
ccl 141
cpp 141
awk 2
sed 264

Table 1: Execution Runs (Continued)

2.3.3.3 groff. Another GNU software package is groff, the nroffftroff compatible text
formatter. The groff package includes gegn, gpic, groadvi, groff, gsoelim, gtbl, and
grroff. A paper written for troff was used to test the package [19]. The command line
used to test groffis given in Example 9.

Example 9.
groff -etps -Tdvi -me paper.input

2.3.3.4 InterViews. InterViews is a software system for building graphical
interfaces for window based applications [20]. InterViews is object-oriented with
windows, buttons, menus, and documents as active elements with inherited behavior.
A programmer uses InterViews as a set of class libraries to aid in building the
interactive view of data for the application.

For this research four programs built with InterViews were tested. These
programs included doc, ibuild, idraw, and iclass. The program doc is a simple what you
see is what you get (WYSIWYG) document editor. It was tested by opening and
viewing several of the example documents provided with the InterViews release.

The program ibuild is an interactive interface builder. It allows a programmer to
interactively edit the interface of an application. The programmer graphically creates
objects from the InterViews library and interfaces the code generated by ibuild with
application code. ibuild was tested by working through the ibuild user’s manual [21].

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

22

As part of this process, the program idraw was spawned. idraw is a drawing editor.
ibuild has a palette of tools which have built-in graphical representations. However,
ibuild will call idraw to allow the user to build a more general graphics image. idraw
was tested in this fashion.

The program iclass is an interactive class browser. It allows the user to
efficiently browse the class hierarchy in an application. iclass was tested by browsing

various C++ source code segments.

2.3.3.5 ghostscript. Ghostscript is a GNU package which allows the viewing of
Postscript documents in an X Windows environment. For testing, the document
“Solaris Application Level Multithreading Seminar: Participant’s Guide” [22] was
opened and paged through.

2.3.3.6 emacs. During the compilation of emacs an intermediate program called
temacs is built. This program is then used to build the standard emacs program with

the command shown in Example 10.

Example 10.
temacs -~batch -1 loadup.el dump

For this research the command temacs was instrumented with Purify and data
collected as temacs built emacs. No memory access errors were found in the supplied
code. However, looking at the memory access errors within system library functions,
Purify reported 64 uninitialized memory read errors, 872 array bounds read errors, and
3,720 free memory read errors. All were within the write function call, part of the
standard C library of input/output functions. In addition, all were reported with the
same program counter value within wrife and each time write was called from the

routine sys_write, a function inside emacs source code.

2.3.3.7 I1dl++. ldl++, a Logical Data Language, is a deductive database system [23]

designed for use in knowledge-based applications [24] requiring efficient access to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

23

large collections of data. The instrumented version of /di++ was tested using the
commands as shown in Example 11. The results of this test were curious due to the
complete absence of the common array bounds read errors and uninitialized memory

read errors but the high count of free memory read errors and free memory write errors.

Example 11.

1d1++(1)> open bike

1di++(2)> initdb bike.fac

1d1++(3)> compile

1di++(4)> query partsof(bike, B)

1d1++(5)> query partsof(bike, [spoke,
rim, sprockets, bolt, nut, tube,
casing, rearderailleur, rearbrake,
chain, chainrings, frontderailleur,
pedals, saddle, post, fork,
frontbrake, stem, bar, cables,
levers, grips, headset])

1d1++(6)> exit

2.3.3.8 amd. amd is the file system automounter for Berkeley Software Distribution
version of UNIX, 4.4 BSD [25]. The function of amd is to automatically mount
filesystems which are in use and to unmount these filesystems when they are no longer
in use.

Since amd intercepts all operations on remote filesystems, it must run as a
daemon process at root privilege level. The instrumented version of amd was allowed
to operate while several remote filesystems were accessed, after which the daemon was
shut down and the error data collected. During normal operation amd forks child

processes to perform tasks; 54 such processes were forked during this test.

2.3.39 parprosys. PARallel PROduction SYStems (Parprosys) is a parallel
architecture for serializable production systems [26]. The software includes a
simulator for the architecture as well as a compiler for Parallel Production Language,
PPL, an explicitly parallel production language [27].

This software package represents the only pre-release package considered for

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

24

this research. To test the system the command shown in Example 12 was executed.

Example 12.
pplc -N 4 mab.l

Several errors were reported but the single cause of most of these errors was due
to a syntax error in the source code. The C++ source code statement in question is
shown in Example 13.

Example 13.
heap = new event ptr(array_ length+l);

The intent of this code to create an array of things. However, the parentheses indicates
that the parameters inside are constructor arguments, not a count of array elements.
The GNU compiler did not complain about this statement. The correct statement
should have contained brackets instead of parentheses.

The code as tested caused a single element array to be created where an array of
array_length + 1 was expected. For this reason many array bounds read and write
errors were reported by Purify.

Its interesting to note that although C++ introduced many type safe

improvements over C, this error would not have occurred in C.

2.3.3.10 sendmail. sendmail is the UNIX Internetwork mail routing facility from
BSD [28]. Like ammd, sendmail was run as a daemon process with root privilege. It was
tested by replacing the normally running sendmail with its instrumented counterpart
which was allowed to run for one working day. During this day 427 child processes

were spawned to perform normal service.

2.4 Results

This section presents data collected for this work. Data are presented in two

ways. The first, in bar chart form, presents frequency of error types. The second, in pie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

25

chart form, provides statistics on percent of total for each error type. Section 2.4.1
defines and presents dynamic error data. Section 2.4.2 defines and presents static error
data. Analysis of the data is saved for Section 2.4.3.

2.4.1 Dynamic error data

Dynamic error data is defined as the sum of occurrences for memory access error
types. Since this research involves memory access errors, which are symptoms of
programming errors, each access error represents an opportunity for a symptom to be
propagated to other parts of the system.

Dynamic read errors have the potential to propagate errors by being included in
calculations of intermediate values. When used in pointer arithmetic these read errors
could cause additional access errors as well.

Dynamic write errors have the potential to propagate errors by corrupting
memory locations used later by the same or even different parts of the system. The
potential to propagate errors to unrelated parts of the system makes write errors the
most troublesome and often the most difficult to isolate.

Figure 5 displays frequency of errors. There were a total of 25,576 access errors

18000
16000
14000
12000
10000
8000
6000
4000
2000

Frequency

T Y
e & €&

fmw

umr

Error Type
Figure § Dynamic error frequency

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

26

collected for this effort. Figure 6 shows the statistics for dynamic errors.

fmr fmw
abw 2%

2%

9%

abr
21%

66%
Figure 6 Dynamic statistics

24.2 Static error data

Static error data is defined as the number of source lines responsible for memory
access errors. This represents the number of source lines involved in generating
symptoms. The static error frequency gives an idea of how often an error type is coded.

Static error frequency is shown in Figure 7. There were a total of 209 different
application source lines involved in generating access errors. Statistics on static error
frequency are given in Figure 8.

80
70
60

w
o

Frequency
w
o O

—_
o oo

umr abr abw fmr fmw
Error Type

Figure 7 Static error frequency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

27

fmw
11% umr

fmr
34%

abr
19%

abw
5%

Figure 8 Static Statistics

24.3 Analysis of data

2.4.3.1 Uninitialized memory read errors. In the dynamic error data uninitialized
memory read errors occurred with the most frequency. A sampling of the source code
for this error type points to sloppy coding practice as the cause. In some cases an
uninitialized pointer or variable was passed to a subroutine knowing it would not be
used based on other arguments in that same call. In other cases an uninitialized
permanent variable is compared to another variable apparently expecting its incidental
value to cause the desired test results.

Comparing the dynamic and static occurrences of uninitialized memory read
errors show that this error type accounts for a much larger percentage of dynamic
errors than it does for static errors. This suggests this error type is much more likely to

be found in loops.

24.3.2 Array bounds errors. The dynamic occurrences of array bounds read errors
occurred with the second highest frequency. Many of these errors appear to be due to
mismanagement of dynamically allocated arrays designed to handle strings. These
character arrays are commonly scanned until a special terminating character is found

or some maximum length is reached. As long as these errors are confined to read type

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

28

errors, program operation is usually not affected. However, array bounds write errors
are more serious. In one case a program had 317 dynamic array bounds write and read
errors which could all be accounted for by a single statement. The loop stepped a
location beyond the end of two equally sized arrays and assigned one to the other.

2.4.3.3 Free memory errors. Free memory read and write errors together
accounted for only eleven percent of the total dynamic errors. However, for static
errors, this group accounted for forty five percent of the total. This suggests that free
memory read and write access errors are much more likely to be scattered around the
source code. It could be argued that free memory read errors are benign in many cases
where the free memory is accessed immediately after being freed. However, there is

no corresponding argument to support free memory write errors.

2.5 Comparing C to C++

Up to this point data from C and C++ programs have been combined. However,
it is interesting to compare the two programming languages to see if anything can be
learned about their relative error rates for access errors. Parprosys was excluded since
it is made up of both C and C++ code. Figure 9 shows the dynamic frequency for each
error type for the C and C++ programs considered. Figure 10 shows the static
frequency for each error type. Care must be taken when comparing the data in these
figures. To make a direct comparison a figure of merit for the programs must be given.
Intuitively, there may be more lines of code in one or the other language. Less intuitive
is the expressive power of a language which may affect the number of source code
statements required to implement a software solution. Nevertheless, it can be seen that
in raw numbers more uninitialized memory read, array bounds read, and array bounds
write error types occurred in the C programs, and more free memory read and free
memory write error types occurred in the C++ programs.

To get a more direct comparison, consider Figures 11 and 12 which normalize

the numbers to percentages with respect to each language. It is interesting to note that

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

29

Y

e Hc
o

g

s Ecw
-

Figure 9 Dynamic frequency comparison

60 -
a
g Bc
[
=
e Bl e+
[T

1 1 } 1 . 3
E s ¢ & E
Error Type

Figure 10 Static Frequency Comparison

the dynamic behavior of the C and C++ programs with regard to uninitialized memory
read errors is similar (69% for C versus 65% for C++) but the static behavior is quite
different (54% for C versus 19% for C++). Its also interesting to note that static values

of free memory read and free memory write error types were larger than for their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

30

g

4

Bc
Elcw

11,

Frequency
N W & O

=
H Bc

°

-

¢ Bl ces
-

Ervor Type
Figure 12 Static statistical comparison.

dynamic counterparts in both languages. This could point out the difficulty with user
(explicit) memory management in both C and C++. It also points to free memory

access errors being much more likely to be scattered around the application source

code in both languages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

31

2.6 Summary conclusions

In this work Purify was used to actively search for memory access errors in
software systems and prove that software errors continue to escape testing and threaten
field failures. Data on five types of access errors were collected. These errors consisted
of uninitialized memory read, array bounds read, array bounds write, free memory read
and free memory write errors. Data on 25,576 access errors representing 209 source
code statements were collected. The data were collected from fifteen software
packages consisting of thirty one independent programs. Sixteen C++, fourteen C, and
one C/C++ programs were tested. Each program under test was observed during
normal operation and no attempt was made to stress the program. Even so, the volume
of data suggest there is plenty of room for improved processes to eliminate software
defects.

The data show that read type errors occur with more frequency than write type
errors. Many of these errors are considered benign and have no effect on the output
produced, which is probably why they make it through the testing process. Write errors
tend to be more catastrophic, and the smaller frequency of occurrence of this type of
error was expected. The data also show that free memory access errors account for a
larger percentage of all errors in C++ programs, a result not anticipated.

Many of the errors reported in this work could be flagged by improved
compilers. In particular, compilers could issue warnings when variables are used
before they have been initialized. Some compilers already do this. Improved
cooperation between compilers, operating systems, and hardware could also help

eliminate many of these errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Chapter 3
Previous Work

There have been many important systems in the past which have attempted to
address some of the concerns of reliable software systems. Some of these systems have
included complete new hardware architecture and operating system software. Others
are software only methods to detect defects 'within a program. This chapter presents
important work in four areas: multi-threaded computer architecture, capability-based

addressing, object-oriented systems, and software defect detection systems.

3.1 Multi-threaded Architecture

In a multi-threaded architecture several threads of program execution have
active state within the processor at any given time. Resources such as the program
counter and working registers are duplicated in such a way that instructions may
execute from any thread ready to run. The processor is designed to switch between
threads to execute their instructions. Instructions in one thread are independent from
instructions of another thread so there are no resource conflicts. The idea is to maintain
maximurm processor utilization by splitting a program into many independent threads.
This idea is extended to multiple processors and many programs (possibly cooperating
programs).

The multi-threaded architecture is a solution to a different problem than this
research is primarily concerned with. Multi-threaded architectures attempt to solve the
massively parallel super computer utilization problem. However, the mechanisms used
to support multiple threads sharing the processor in a secure fashion is very interesting
to consider for its protection properties. In such architectures threads which are part of
a program (task) share a single protection domain. Threads from different tasks may
be active simultaneously. The pioneering work for this type of architecture was the

32

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

33
Denelcor Heterogeneous Element Processor (HEP) multi-computer [29].

3.1.1 HEP

In the HEP system terminology, a program is assigned a protection domain as
part of a task [30]. A task is a set of one or more processes corresponding to
independent threads of execution. A task begins with a single process and expands to
as many processes as it needs up to a pre-declared maximum for the task. The machine
can start one instruction per cycle from any given process of any task, but instructions
cannot be issued from a given process more often than once every eight cycles
(pipeline depth). Each clock cycle the machine switches to a new process, and this
includes a protection domain switch if necessary.

The system can support 64 active user processes at a time and 8 active user tasks
at a time (likewise for operating system processes and tasks). To support this many
active execution states at one time the processor has 2048 general purpose registers. A
protection domain for a task is identified by a task status work (TSW), a 64 bit quantity
which can be held in a single machine register. The components of the TSW are shown
visually in Figure 13. Registers, program memory and data memory are all identified
by base and limit values in the TSW and the hardware enforces register and memory
usage within these limits for the corresponding task. The remaining base value is an

index into an array of constants. Each process of a task has a process status word

Task Status Word
e | liqtlb imi 1pit |
—»
Data
>
Program
Registers Memory

Figure 13 HEP Task Status Word

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

34

(PSW) which contains a 20 bit program counter and some state information.

Processes of a HEP task share a common protection domain which is completely
specified by its corresponding TSW. The speed at which the HEP can switch between
protection domains make it worth considering for application to object-based
protection domains. The HEP is able to switch protection domains so quickly (single
cycle) because it can completely specify the protection domain (TSW) in a processor
register. However, it only contains eight such registers in the processor for user TSWs.
To protect one object from another each object would have to be a task level code
segment. This would mean only eight objects of a single program could fill the
machine instead of the designed eight tasks (programs).

To be an effective architecture for object-based protection HEP would have to
support many more protection domains. One possibility would be to expand the
process status word (PSW) to include protection within a task. There are enough
general purpose registers to support the processing requirements of 64 such objects.
The PSW would have to be extended with many of the same fields as the TSW, but
these fields could perhaps be smaller since they are specifying sub-protection within a
normal task protection domain. This possible architecture change overlooks the
important feature of HEP. Processes are independent threads of code ready to have
instructions issued. The ordinary object-oriented program is considered a sequential
program with a single thread of execution passing through it. As such, only one object
is active at any given instance of the program execution. In HEP, a process does not
exist if it does not have a program counter from which instructions are ready, or
waiting, to be issued. Objects would therefore not have their protection domain loaded
into the processor until it has been called. HEP provides no feature to support the fast
loading of new protection domains. In addition, a task in HEP must declare up front
how many processes it will require in order to schedule the resources needed.

Considering the HEP as a possible platform for object-based protection is an

interesting exercise. On one hand it points out a possible method to provide for quick

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

35

protection domain changes as would be required by lots of small objects. But to make
use of the mechanism in HEP the state of an object would have to be present in the
processor. The HEP limit of eight user protection domains is much too small for even
a single object-oriented program. On the other hand, expanding HEP to object-based
protection shows how the resource requirements in the processor would have to grow
to support lots of objects with individual protection.

Since this research is presenting a new type of tagged computer architecture, it
is interesting to note that HEP is also a tagged computer architecture. The most
common use of tags in computers is to identify the type of a data item, such as an
integer or floating point value. HEP, as in the proposed architecture for this research,
uses tags in a unique way. In HEP memory includes an extra bit for indicating if the
corresponding word of memory is empty or full. When used, the word cannot be
written when its already full, and it cannot be read when it is already empty. This
mechanism is used for program synchronization, not support for protection, and will

not be discussed farther.

3.2 Capability-Based Systems

Capability-based systems are segmented memory architectures which require a
capability to be presented before access to a memory segment is allowed [31].
Capabilities themselves act as tickets presented to the hardware to perform certain
accesses on a segment. A capability uniquely identifies a single memory segment and
the access rights the owner of the capability possesses. In addition, capability-based
systems make it impossible for a capability to be forged or the access rights to be
modified. In this way the architecture can assure a given program module will remain
within its own allocated memory segments. Cooperating modules may copy the
capabilities to promote sharing of memory segments.

In capability-based addressing all references to memory are made indirectly

through a capability as shown in Figure 14. This figure shows a possible virtual address

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

36

capability table virtual address memory
|
g e | Limit
—®i segment
(permissions check | limit check

Figure 14 Capability-based Addressing

format where part of the address specifies a capability.The capability contains the base
address of the memory segment and its size.The base address is combined (added) with
the offset contained in the virtual address to find the data. Also, the limit in the
capability is compared to the offset to check for out-of-bounds references.

The need for privilege modes of operation (i.e. operating system versus user
program) are eliminated by the use of access rights which cannot be forged or
modified. Typical access rights include read, write, and execute. A more complex right
is the enter right. For one program module to call another module it must have a
capability with the enter right. The call instruction will create a new protection domain
for this new module to execute. In this way program modules are protected from each
other. The capabilities of the new module are a combination of those given to it when
it was created and those passed to it through parameters.

Capability-based systems are intended to be used where protection domains are
small and changed often. Typically a program module, such as a subroutine, will be
contained in its own segment. In this way the protection domain is tailored during a
program execution to suit the needs of its sub-modules.

The advantage of small and dynamic protection domains is the facilitated

software debugging and the confinement of errors during maintenance. There are two

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

37

basic methods used to implement capabilities. The first maintains capabilities in
separate segments and is manipulated with special machine instructions. The second
tags capabilities in bits invisible to programs and allows data and capabilities to be
freely mixed in data segments. The following two sub-sections present a commercial
implementation of each of these methods. Section 3.2.1 presents the Plessey 250 which
exemplifies segregating capabilities and data. Section 3.2.2 presents the IBM System/
38 which exemplifies the mixing of data and capabilities in normal data segments. In
Section 3.2.3 the guarded pointers of the M-Machine are presented as a more modern

and technologically advanced example of capability-based addressing.

3.2.1 Plessey 250

The Plessey System 250 computer has two types of instructions [31]. The store
mode instructions reference memory (store). Direct instructions perform operations
which do not require a memory operand. Eight capability registers (C0-C7) identify
the protection domain at any instance during the execution of a process. Instructions
themselves are referenced using the capability in register C7. Store mode instructions
operate as shown in Figure 15. The instruction specifies a capability register which the
hardware uses to infer the rights to access the segment and limit the offset value.
Simple instructions allow capabilities to be transferred between capability segments
and capability registers. To load a capability, as Figure 15 indicates, a capability
identifies the segment where the rights are extracted as well as an index. The operating
system maintains a system capability table in which the index identifies an entry to
extract the base/limit pair the capability is to have. In this way different capabilities can
have different rights to a given segment.

The computer requires no privileged mode of operation. The same facilities for
protection domain management are available to the operating system and user
programs alike. The difficulty with this architecture lies with the hierarchy of

protection domains. It is entirely up to the user, or the compiler used, to manage the

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

38

data segment

L

capability
g Scgment

AN
~
rd

System

| DU Capability
- Table

-

|
I i <
l L base | size | cs |
|
t

processor , memory

Figure 15 Addressing in the Plessey 250

capability registers. Capabilities are inherited through the capability registers and the
hierarchy of capability segments which they point to. The architecture does not allow
subroutine calls within a segment, therefore each subroutine must occupy its own
segment. Capabilities being maintained in separate capability segments cause the
proliferation of small segments. Also inherent in this architecture, as in most

capability-based addressing architectures, is the indirection of memory access.

3.2.2 IBM System/38

The IBM System/38 is also a capability-based machine {31,32,33]. Its most
unique feature is its use of tags to maintain capability integrity. This allows capabilities
and data to be freely mixed in data segments. In System/38 a capability is called a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

39

pointer and is 128 bits long. Memory is 32 bits wide which means pointers take up four
consecutive locations. Each word in memory contains an additional seven bits of error
correction codes and one bit to indicate the location is part of a valid pointer. These
eight bits are not part of the visible memory word and represent a 25 percent overhead
in memory requirements.

Figure 16 shows the process of object addressing in System/38. Memory is
maintained as segments and addresses are 64 bits. Instructions reference a pointer to
gain the rights to access another segment. Microcode must extract the pointer and
check that all four valid bits are set indicating a valid pointer. The rights field must then
be checked for an allowed operation. Hardware directly supports only 48 bits of the 64
bit address so microcode must emulate the upper sixteen bits by checking them against
a copy maintained in the segment header.

Although capability-based addressing in the System/38 is maintained on a

segment basis, virtual memory is based on paging. The System/38 attempts to have the

32-bit data + 7-bit ECC + 1-bit valid

; ; Data
instruction Segment
~—
S~ ~ -
=~ ~ = =~ —
=~ 4L - \object pointer S - -
virtual addrwﬂrighlsl olher]
/ \
Ie:g&eg id]brp idl offset
header

Figure 16 Object addressing in System/38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

40

advantage of structuring programs into natural sized segments for protection domains
while keeping the efficiency of a paged virtual memory system.

System/38 is a very complex architecture. The machine is implemented with two
levels of microcode. Microcode must extract 128 bit pointers from 32 bit memory,
validate the pointer and the access rights, translate the virtual address in the pointer to
a physical address of the object, retrieve the upper 16 bits from the segment header and
compare to the upper 16 bits in the pointer before access is allowed to the object.
Although several steps of this process could possibly be optimized through
technological enhancements, the inherent two levels of indirection to access the object

would still remain.

3.2.3 M-Machine Guarded Pointers

One of the more interesting implementations of capability-based addressing is
the guarded pointers of the M-Machine [34]. The fact that pointers are tagged to assure
authenticity is very similar to the System/38 method to assure capabilities cannot be
modified or forged yet can be freely mixed with data in a memory segment. But where
the guarded pointer differs from its System/38 predecessor is in the fact that the
capability is completely encoded into the pointer eliminating the need to look up the
capability in a system wide capability table. This eliminates one level of indirection
inherent in previous capability-based addressing architectures.

Figure 17 illustrates the guarded pointer format. The pointer is 64 bits in length

Pointer Segment
Ta Length (L) Address
[i i 4 bits its | 54 bits }
Permission . X
Bits : + :
[_segment ;| offset |

Figure 17 Format of a guarded pointer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

41

and contains 54 bits for a virtual address. Processes in the M-Machine share a single
54 bit virtual address space. The permissions bits (rights) indicate what permissions
the current process has to access memory. All memory accesses must be performed
using guarded pointers. Any attempt to access memory otherwise will raise an
exception. The ability for a guarded pointer to completely encode a capability lies in
the segment length field (L). A segment in the M-Machine is simply a virtual address
with 2" least significant bits set to zero. The offset is a virtual address with the segment
bits set to zero. In other words, L determines where to split a virtual address between
its segment part and its offset within the segment part. Obviously this method to
encode a segment location and size has some severe constraints, but allows a very
efficient representation of a capability. Assuming completely random object sizes, such
an allocation scheme would expect to incur a 25 percent waste in memory utilization.

The application of guarded pointers in the M-Machine solves the tough problem
of allowing multiple threads of execution, from separate protection domains, to
securely share processor resources in a multi-threaded computer architecture. Since all
processes share a 54 bit virtual address space, and guarded pointers protect memory
segments within this space, a process maintains security while the processor
interleaves instructions from processes on a cycle-by-cycle basis.

The M-Machine provides for the rapid change of protection domains between
multiple independent threads of execution. However, installing a new protection
domain (i.e. when one object calls another) is still a rather heavy weight operation
when compared to calling an object in the typical non-protected implementation. An
object-based system implemented with guarded pointers would require a new
protection domain to be loaded on each object call. Since guarded pointers are freely
transferred between memory and registers (protected in both places with a tag) the
calling routine would have to be careful to clear all registers of pointers before
executing the enter capability instruction (enter right to a program segment). In

addition, the calling routine would have to set up a return capability and pass it as an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.cor

42

argument so the called routine would have permissions to return execution. The called
routine must take similar precautions to keep from returning permissions to access its
segments. As long as arguments to the called routine fit into registers there is no
additional overhead, but when arguments exceed the capacity of registers a shared
segment must be set up to place the arguments and a capability to access this segment
passed to the called routine. However, to create a new segment for holding arguments
requires a new guarded pointer be manufactured to address it, an operation which

requires a separate call to a privileged routine capable of setting the tag bit.

3.3 Object-based Systems

In the computer language area the principle of information hiding and abstract
data types have evolved to solve the same problem as capability-based addressing,
namely the facilitated software debugging and the confinement of errors during
maintenance. An abstract data type is a model which encompasses a type and an
associated set of operations [35]. Abstract data types utilize the information hiding
principle and tightly bind operations and data so that a change in the data structure
defining the type will have a very localized effect. Localizing the effect of change has
been motivated by the difficulty in maintaining complex software systems. Object-
based systems combine capability-based addressing for protection with enhancements
to aid in the implementation of abstract data types.

The following sections will present three architectures which support object-
based systems. Section 3.3.1 presents the iAPX432 processor and exemplifies the
construction of an entire system from scratch, both hardware and operating system, to
support objects. Section 3.3.2 describes the protection scheme used by MUTABOR, a
system which attempts to provide a technological solution to the problems encountered
in the iAPX432. Section 3.3.3 describes the protection mechanism in Ra, a system
which avoids the problems associated with adapting capability-based addressing and

attempts to use an enhanced memory management unit to support objects.

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

43

33.1 iAPX432

The Intel iAPX432 evolved from the Carnegie-Mellon Hydra operating system
[31,36,37]. Its architecture is very complex and is heavily microcoded. Everything in
the iAPX432 is an object. Capabilities are called Access Descriptors (ADs) and are the
only protection mechanism. The machine is a stack architecture and contains no
registers.

Figure 18 shows how object addressing is performed in the iAPX432. Protection
domains are maintained on a segment basis, just as in the Plessey 250 and System/38.
However, a segment is divided into two parts, the access part (AP) and the data part
(DP). As in the Plessey 250 capabilities are maintained separately from data. A fenced

segment approach is used to allow a single segment to contain data and/or capabilities.

o instruction]

DP
stack
ip _loghts| ——-LD’PEM
domain l‘_l V4
sp
status [P

e =] [-

env0

= envl ’_’ | ~ -

env3

-
|
|
!
!
!
|
!
!
!
!
! aF AP 0D P
|
|
|
|
!
!
|
l
L

_ontext :
. Environment Object
Object Object Table Dir op

(global) Gpicet -
Table

-—— -

|
Domain Instruction |

Object Object 1

Figure 18 Addressing in the iAPX432

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

44

Capabilities are kept on one side of the fence (AP) and are accessed only by microcode
while data is maintained on the other side of the fence (DP). The Context Object
maintains the context in which a procedure is operating. It contains the currently
executing procedure's stack, instruction pointer and domain, stack pointer as well as
the base set of capabilities the procedure has.

Object addressing in the iAPX432 is performed in two steps. For the first step
the Context Object contains four special capabilities, env0 through env3 in Figure 18.
These capabilities point to the current operating environment addressable by the
procedure. These locations in the Context Object may actually be written by the
procedure to change the current environment, in very much the same way capability
registers in the Plessey 250 are updated. In the first step a field in the instruction selects
which env capability to use. The one chosen selects an associated Environment Object.
Another field in the instruction selects one of the capabilities (AD) in the Environment
Object (offset into the AP side of the object). Now a capability has been selected for
the object the instruction wishes to access. This capability contains the rights to access
the target. Two offset fields in the capability select an object in the Object Table
Directory and the Object Table, respectively. The Object Descriptor selected in this
two level lookup operation now points to the target object. A final field in the
instruction selects an offset into the data part (DP) of the target object. Exclusive of the
instruction fetch, this two step procedure to address an object takes five memory
accesses.

In the iAPX432 even instructions are kept as objects. The Context Object
contains the current Domain Object AD (not shown in Figure 18) which points to the
current Domain Object. The Instruction Domain AD (iAD in Figure 18) within the
Domain Object points to the currently executing Instruction Object. The Context
Object maintains an instruction pointer (ip) as an offset within the Instruction Object
for instruction sequencing.

Although this description is very brief for such an architecture it points out the

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

45

complexity involved. When the call instruction is executed the context must be
changed. This is done by creating a new Context Object. Even though Context Objects
are maintained in a free list of available Context Objects, initializing a new context is
costly. Performance of the iAPX432 was not good. In fact, some point to it as an
example of why architectures should be simplified. The iAPX432 not only suffers from
the inherent two levels of indirection (capability lookup and physical location lookup),

but adds considerable indirection and complexity in its implementation.

3.3.2 MUTABOR

MUTABOR is a object-oriented memory management co-processor to the
Motorola 68020 processor [38,39,40]. The MUTABOR co-processor attempts to
address the issues which caused the iAPX432 to have poor performance. The first of
two key ideas is the separation of address space management and storage space
management. The second is a large translation lookaside buffer to cache address
translations. Like the iAPX432, MUTABOR supports a segmented memory with
capability-based addressing to objects of the fenced segment type. Capabilities are
maintained by microcode on the capability side of the fence.

The separation of address and storage management is revealed in the addressing
scheme depicted in Figure 19. Virtual (program) addresses are issued by the 68020 and
translated by MUTABOR. The virtual address is divided into three parts. The first part
indexes into the root of a two-level tree and identifies a capability list by physical
address. The second index picks a capability from this list. As in other capability-based
systems, the capability identifies the segment type and rights to the segment. However,
instead of a base and limit field the capability contains the virtual page number,
referred to as the object short name, which contains the object.

The object short name is itself divided into three parts. The first two are used to
index into a two-level page table to identify the frame in physical memory. Frames are

considered large compared to objects and are therefore divided into sixteen parts.

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyz\w\w.manaraa.cor

capa T
/ | - ‘
/ |
/ _4 -
L -7 1
|
: |
|
Address Management : Storage Management physical
page

|
Figure 19 Addm'asing in MUTABOR
Sixteen words are reserved at the beginning of the frame as headers to identify the base
and limit of an object within the page. The final part of the object short name chooses
one of these headers. The final part of the virtual address is used as an offset from the
base address in the header to address a memory word.

The addressing description above indicates five memory references must be
made to perform address translation. A translation lookaside buffer is provided with
separate object translation and page descriptor caches. Virtual addresses are extended
by a four bit process identifier (PID) which separates the translation lookaside buffer
into 16 sections reserved for 16 active processes. Each section is intended to be large
in order to have a high hit rate.

The contribution of MUTABOR is its separation of management tasks so that
each may have its own policies. The large translation lookaside buffer attempts to
reduce the penalties of the inherent indirection in object-based systems. However,
instead of reducing the amount of indirection as compared to the iAPX432,

MUTABOR actually increases the levels of indirection. A very large and complex

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

47

caching scheme is required to accelerate the common case of memory access and very
high hit rates are absolutely necessary. In addition the cache itself now requires two
levels of lookup, the capability lookup and the physical address lookup, which must be
performed in serial fashion. Compared to the iAPX432, MUTABOR liberally applies
caching mechanisms to overcome the implementation limitations but otherwise brings
no notable advances in accelerating capability-based addressing when used to

implement object-based systems.

333 Ra

Ra is the kernel to the Clouds operating system, an object-based system. The
proposed Ra architecture for object-based support is different from the other
architectures surveyed in that it does not use capability-based addressing [41,42,43].
In Ra an object invocation is much like a context switch in traditional systems which
provide protection on a process basis. Part of the overhead when making a switch in
context is the manipulation of the memory management unit hardware as well as the
performance hit from flushing and reloading the translation lookaside buffer.

The Ra memory management unit divides the virtual address space into four
sections by using the two most significant bits of the address, similar to the R2000
processor [44]. The four spaces are kemmel unmapped space, kernel mapped space,
process space, and object space. The system loader is responsible for putting sections
in the correct space. The Ra memory management unit takes the R2000 approach to
translation lookaside buffer loading which is to leave it up to the kernel.

The three approaches to efficiency which the Ra memory management unit uses
are:

- tagging virtual page numbers (VPNs) within the memory management unit to
allow multiple protection domains to share the translation lookaside buffer,
+ minimizing the memory management unit operations required to switch protection

domains, and

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

- use of a large translation lookaside buffer to minimize overflows.
The structure of the Ra memory management unit is partially shown in Figure
20. The upper two bits of a virtual address select one of the four spaces as mentioned

1 ONE_
offset
kK | VPN

OA

Alias

Table
Translation | Page Frame
Lookaside
Buffer

Figure 20 Proposed Ra Memory Management Unit

before. Object space addresses are tagged with the Object Alias Register (OAR) which
contains an Object Alias (OA) for the currently executing object. The remaining bits
of the virtual address are divided into VPN and offset. The OA and VPN are
concatenated and used to do an associative search in the TLB to find the associated
physical page number (PPN).

On object invocation the kernel must only write the new object name into the
Object Name Register (ONR). The memory management unit maintains a list, called
the object Alias Table (AT), of the most recently used object names. The index into the
AT is used as the alias for the object in order to reduce the required bits in the
translation lookaside buffer. The memory management unit must search the AT for an

entry matching the object name. The index of the match is loaded into the OAR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

49

The bottom line is that the Ra memory management unit extends the virtual
address with a protection domain identifier to allow muitiple domains to share the
translation lookaside buffer. Additional features have been added to the basic idea to
support a larger number of domains with acceptable implementation penalties. Adding
domain identifiers to support multiple protection domains has been used many times
but seldom on an object basis. Notice, however, the Ra memory management unit still
assigns pages to a protection domain. In Ra, pages are recommended to be on the order
of two kilobytes. This is much larger than the natural size of objects in most object-
oriented programming languages.

The Ra memory management unit does not address other issues involved in
switching tasks. In Ra an object invocation is like a task swap but with the advantage
over tradition system that it requires a minimal amount of memory management unit
overhead. It still requires a kernel trap to install the object alias of the new object to be

executed and to copy any parameters to be passed between address spaces.

3.4 Software Defect Detection Schemes

There are several software based schemes to implement capability-based
addressing and object-based systems on conventional hardware. These systems
interpret capabilities as addresses in software. Although very interesting systems
result, they are less relevant to this research. However, this research is directed toward
efficiently detecting software defects within a program and less concerned with
providing a general protection and sharing mechanism for building computer systems.
To that end it is interesting to consider systems which attempt to detect software
defects within a program. This section presents two such systems which use software
techniques applied to the program to detect or prevent memory access errors. Section
3.4.1 briefly presents Purify, the defect detection tool used in Chapter 2 to survey
software systems. Section 3.4.2 presents Safe-C, a source-to-source translator aimed

at eliminating the possibility of stray memory accesses. Neither of these systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.con

50

attempt to be a general solution to protection to base a computer system architecture
on. Instead they focus on the problem of building reliable software. Both are excellent
tools for debugging software, but rely on added instructions to check memory
references. Such checking code makes these systems too inefficient to be practical.
Purify and Safe-C are examples of object-code insertion and source-code insertion,

respectively.

3.4.1 Purify

The basic operation of Purify was described in Section 2.2.3 on page 10. As
noted, Purify instruments each byte of program data with two tag bits. The
instrumentation process is applied to the object code of a program. For this reason
Purify can instrument software without having access to the source code. This implies
all code is checked, including libraries. As a result of using object code insertion
technology, Purify is relatively independent of the programming language but at the
same time very processor dependent and extremely difficult to port. Purify maintains
the state in tag bits by intercepting (installing a jump to the checker routine) all
memory access instructions in the object files, including the memory allocation
routines.

Space for the tag bits must be allocated in the instrumented program and
represents a 25 percent overhead when considering just the program data. If data is
about the same size as the code for a program this would represent a 12.5 percent
overall expansion of memory requirements for the program. But the checking code
would need to be added to this overhead calculation. In performance it has been
published that instrumented code averages 2.3 times longer in execution time and has
a bounded upper limit of 5.5 times normal. However, experience during the research
for Chapter 2 indicated an average execution time of about 5 times normal.

Purify has its limitations. [t does well on memory allocated from the normal

heap space but not as well on other types of data. For example, array bound errors are

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

51

not detected in static or stack memory. Purify can only determine if a memory location
is currently active in the context of program execution. It cannot detect a dangling
pointer reference to memory which has been re-allocated for another purpose. Purify
also cannot detect an array bounds error which is far enough out of bounds. Finally,
accesses using corrupted pointer values which happen to point to active memory for

the program cannot be detected.

3.4.2 Safe-C

Safe-C is a software preprocessor which transforms C software into an
instrumented C program capable of detecting pointer and array access errors [1]. Safe-
C transforms programs at compile-time to use an extended pointer representation
called a safe pointer. A safe pointer contains object attributes as well as the address of
the object. These attributes include the current value of a pointer, the base address of
the object, its size, its storage class, and a capability. The current value can contain any
bit pattern without restriction until the pointer is used (de-referenced) to access
memory. Safe-C inserts de-reference checking code to make sure only valid accesses
are allowed. Using this scheme Safe-C can check most accesses to memory through
pointers or arrays (implemented in C with pointers).

A de-reference check first checks the storage class and if it is a global object the
access is valid. Otherwise the capability associated with the pointer is checked. The
capability will determine if the associated address has been released to the free space
or re-allocated for another purpose. If the memory holding the object is still valid then
the access is valid. Once an access is determined to be valid, a check for a valid address
within range of the object will be made using the object base and size values. Only
when an access is determined to be to a valid object and within range of the object will
the access be performed.

Safe-C differs from Purify in that it operates on source code which makes the

translator language dependent but not processor dependent. Safe-C improves coverage

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

32

in several areas as compared to Purify. Safe-C can determine any array bounds error
while Purify can only detect nearby bounds violations. Safe-C can also determine all
dangling pointer de-references while Purify can only make such determination while
the memory remains in the free memory pool and is not re-allocated. Purify cannot
make these checks because it does not have information about the context in which
these accesses are made, a limitation inherent in working at the object code level.

Safe-C has its problems as well. Some pointer manipulations cannot be detected
by the translator. An example of such is when a union is composed of an integer and a
pointer. Safe-C cannot maintain a valid safe pointer representation while the value is
operated on as an integer. Safe-C cannot be applied to code which is not available in
source code form, such as the libraries the application is linked to. Purify does not have
this limitation.

Software which has been transformed by Safe-C can expect 100 percent
expansion of its data space requirements on average. Execution times for programs
range from 2.3 to 6.4 times normal. These overhead penalties are caused by a 450
percent overhead in the representation of pointers along with the added code required

to manipulate, maintain, and check these pointers.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

Chapter 4
Logical Object Tagging Architecture

This chapter will present the Logical Object Tagging Architecture (LOTA). Itis
presented as a stand-alone architecture (architecture reference) but in fact is intended
to be a portion of a general purpose processor architecture. Chapter 5 will analyze an
implementation of LOTA as part of such a general purpose processor. Chapter 6 will
revisit the architecture presented here to explore alternatives to design decisions,
provide some insight into tightening the performance bounds, and present interesting

future directions for the architecture.

4.1 LOTA Reference

4.1.1 Overview

The design of the Logical Object Tagging Architecture (LOTA) has only two

goals:
1. Assure objects have exclusive access to their data.

2. Achieve the first goal through mechanisms efficient enough to be used during the

entire object-oriented software life cycle.

Chapter 3 presented several architectures which are capable of satisfying the first
goal. None of these architectures succeeded with the second goal. Part of the problem
with these earlier systems was that they tried to make the hardware too knowledge-
able about objects: where they were, how big they were, what permissions they had to
call other objects, etc. This led to a large amount of information for the processor to
maintain and large resource requirements inside the processor in an attempt to apply
this information efficiently. LOTA attempts to avoid the same pitfalls by enabling the

processor with one simple piece of knowledge about objects: data belongs to a spe-

53

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

54

cific object which has exclusive access rights to it. LOTA applies two novel ideas to
reach its goals. The first is that data, in memory, is tagged with the identity of its
owner (which is an object). No other system has tagged data for ownership. The sec-
ond is that these tags are checked in the cache. No other system has used the cache to
perform access rights checking.

The block diagram for the LOTA is presented in Figure 21. LOTA is actually an

;’ ___________ Central Processing Unmit ’l
| 1 Execution Unit Execution Unit Execution Unit i
| (X X} i
| |
| * t Internal Buses e i
! i i { A !
I Do Memory Unit Tag General Instruction Unit I
| i . Registers Registers |
[|load/store }address| re r | domain I
S U Y 7 QR PR 4
;'_'-" _""-—-TaﬁoELana-’g'em?ntTJm’E’-""J-_ ""‘;
Data Memory Inst. Memory
] Management Unit Management Unit |
| |

;"‘;"" ------- Cahe Gait. I i
i Data Address ' Data Cache Instruction Cache Add.resJ Inst. I
: Gache ™ ag data [domain | [Cinstructions | _mg | Soche :
I I
| -, -— e e e e cm e - n ame e G em em e cem e cm e = e - -— o

L , External Bus Interface Unit

External Address Bus External Data Bus

Figure 21 Logical Object Tagging Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

55

architecture extension which can be grafted onto many general purpose processor
architectures. For simplicity, LOTA is presented as part of a Reduced Instruction Set
Computer (RISC) architecture. The block diagram shows instructions and data passing
through separate memory management units and cache units. This emphasizes that
LOTA derives its benefits from enhancements to the data path and leaves the
instruction path unchanged.

The central processing unit, as shown in Figure 21, contains an instruction unit,
several execution units, a data memory unit, a tag register file, and a general register
file. The instruction unit is responsible for fetching instructions and scheduling their
execution by one of the execution units. The only instructions in LOTA which access
data memory are the load register from address and store register to address
instructions. These instruction types are executed by the data memory unit. In a
processor without the LOTA enhancements, load and store instructions can be
specified by the triplet (load/store - register - address) . The first element specifies
the direction, the second specifies which register, and the third specifies what address.
The address itself may be calculated (i.e. the sum of two general registers), but if so it
must be done at the time the instruction is issued to the data memory unit. As shown
in the data memory wunit of Figure 21, LOTA wuses a 4-tuple
(load/store - register - address - domain) to specify a load or store operation. The
domain element specifies which object was executing when the load or store
instruction was issued. The domain value is supplied by the tag registers which are
maintained by the compiler.

The data cache maintains a copy of the most recently used data from main
memory. The cache copies of data are tagged with the main memory address used to
fetch them. All load and store instructions operate on this copy of memory and leave
the coordination with main memory up to the data cache controller. The data memory
unit passes the address to the data memory management unit for translation before it

is passed on to the data cache. The data cache must first make sure a copy of the data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

56

from main memory is in the cache. The load or store instruction can then complete by
transferring the data between register and (cached) memory. In LOTA, the domain field
in the cache is checked against the domain element in the data memory unit 4-tuple
(loadlstore - register - address - domain) to make sure the access is allowed in the
context of the executing object.

Figure 22 can help clarify how object-based protection is accomplished. The
compiler stores the virtual address of an object in a tag register. Load and store
instructions use this value as the domain element of the 4-tuple
(load/store - register - address - domain) . Data in the cache contains two additional
fields. The address tag field contains the physical address used to copy the data from

<4-tuple expressing a load or store instruction object base address

tag register
(virtual address)

Data Memory
Management Unit

PhysimlAddress
A 2 T

| Dala Cache |

| |
l Cache Enlry v l
i address tag| data | domain [

b - - -

infMemory

=

Physical Address

Figure 22 LOTA Object-based Protection

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

57

main memory. This field is used to match the translated address of the load/store
instruction. As part of the cache copy operation the main memory tag is copied,
without interpretation, into the domain field. The cache uses the domain field to check
the access rights of the load/store operation. As can be seen by this description, logical
(virtual) addresses of objects are being used as tags in this architecture, hence the name
Logical Object Tagging Architecture.

4.1.2 Programming Model

LOTA presents two programming models. The user programming model, as
shown in Figure 23, is a subset of the supervisor programming model. The user
programming model consists of three tagging registers each of which have special
functionality associated with its use. These registers are large enough to contain a
logical address as may be generated by a program. Register t1 represents the currently
executing object (alias for this register will be 7.,) and all access to data memory
is performed in the context of the object indicated by this register. Register tO
represents the next object (alias 7,,.,) to be executed and is used to update the tag in
memory on certain data memory operations. Register 2 is the previous object (alias
tprevious) to have been executing.

When one object calls another in a different protection domain these registers

are rotated as 10 — t/ —» t2. This implies the current object becomes the previous

while the next object becomes the current one. Register tO is not changed during this

re--------- a

It |

| U l (] Tagging Enable (TE)

| |

I . |

 User Programming Model Supervisor Programming Model

Figure 23 LOTA Programming Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

operation.

When an object returns to the one which called it the registers are rotated in the
reverse direction as 2 — ¢/ — 10. This implies the current object again occupies the
next object position while the previous object again becomes the current executing
object. Register 2 is not changed during this operation.

Use of the tag registers is restricted to protection domain definition and
enforcement. They cannot be used as general purpose registers to hold computations
or addressing information. Transfers into and out of these registers can only be
performed as register-to-register operations and cannot be the target or source of
memory load or store operations. These registers are initialized during normal program
initialization and are maintained by the compiler using transfers between general
registers.

The supervisor programming model includes the user programming model as
well as a single tagging enable (TE) bit. This bit is used to indicate if the user process
will utilize the tagging protection mechanisms. This bit has its state distributed to all
other parts of the architecture which require such knowledge for proper support of both
tagging and non-tagging processes.

4.1.3 Addressing Modes and Instruction Set Summary

There is only one addressing mode for transferring information into or out of the
tag registers. This addressing mode is control register addressing and specifies transfer
between a general register and a tag register. For instructions which do not have a tag
register as its target or source operand, LOTA places no restriction on addressing
modes. In this discussion § will be used to denote a source register and D will be used
to denote a destination register. For example, tD denotes the destination tag register
and r$ represents the source general register. Domain will be used to denote which

object owns a memory location and will be described in more detail in Section 4.1.4.

Load Tag Register. The load tag register instruction transfers a designated source

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

59

general register in the processor to the designated destination tag register.

rS —-tD

Store Tag Register: The store tag register instruction transfers a designated source tag
register in the processor to the designated destination general register.
tS > rD

Enter Protection Domain. The enter protection domain instruction jumps to a
subroutine, which causes the flow of program control to be changed, while at the same

time causes the tag registers to be rotated. The effect is to make a call in a new

protection domain.

10—>1tl —>12
target address — program counter

Return from Protection Domain. The return from protection domain instruction
returns from a subroutine, which causes the flow of program control to be changed,
while at the same time causes the tag register to be rotated. The effect is to return from
a call to a previous protection domain.

2->tl 510
return address — program counter

Load Register. The load register instruction loads a general purpose processor
register with data from the specified address. The operation is only allowed if t1

matches the domain associated with the data.

ifit]= domain) = rD < [address]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

60

Store Register. The sfore register instruction stores a general processor register into
the specified address. The operation is only allowed if tl matches the domain

associated with the data.

ifitl= domain) = [address] «rS

Store Register with Tag Update. The store register with tag update instruction stores
a general register into the specified address and at the same time updates the domain
field of the corresponding data with the value in tO. The operation is only allowed if t1

matches the domain of the associated data or if the operation is to a free stack location.

ifit] = domain) = [address] « rS, domain < t0
if{free stack address) = [address] « rS, domain « t0

Update Tag. The update tag instruction updates the domain field of the corresponding
data with the value in t0. The operation is only allowed if t1 matches the domain of the

associated data or if the operation is to a free stack location.

if(t]1= domain) => domain « 10
if(free stack address) = domain « t0

4.1.4 Instruction and Data Caches

LOTA implementations contain a cache memory in the processor to speed
access to data and instructions which exhibit locality. This cache is physically tagged
so that it does not need to be flushed on a process switch. How the cache is organized
for a specific implementation is not specified in the architecture. The cache may be set

associative or direct mapped. The cache may be split between data and instructions or

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

61

it may be unified. These details can be chosen in each implementation.

As Figure 24 shows the cache organization is based on a set of N adjacent data

| domain | [address tagJ L state | Data Words O to N-1 |

Figure 24 Cache Organization

words, a state field, an address tag, and a domain field. Taken together the fields make
up a cache line. These cache lines are duplicated as necessary to implement the cache
organization desired for an implementation of LOTA.

The state field consists of bits necessary to maintain cache coherency in a multi-
processor environment. They may also be used for cache coherency in a system design
where the processor is not the only device which moves data around in the system. For
cache coherency schemes which use the MESI (modified-exclusive-shared-invalid)
model, it would require two state bits to represent the four states in the model.

The address tag is the physical address of the memory location which the line
contains. Using the physical address to tag the cache line indicates that address
translation, from virtual (program) addresses to physical memory addresses, must take
place before a cache operation may be performed. This physical address tag may be
reduced in size by the number of bits needed to address each individual data byte in
the cache line. These bits identify a particular byte within the line while the address tag
indicates the invariant part of the address.

The domain field indicates which object owns this physical piece of memory.
Program (virtual) addresses are used as values for the domain field. Since addresses in
LOTA specify a byte location, but memory is organized as words, this makes one or
more least significant address bits unnecessary. The first of these unnecessary bits (the
least significant bit) is use to indicate if the data in the line is global data as shown in
Figure 25. Global data is accessible to all objects and therefore may bypass (match on

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

62

[object address | not used G|

[_. Global

Figure 25 Domain Format

all) domain comparisons. The number of bits not used may vary depending on the

implementation. Bits that are left unused may be utilized for other functions.

4.1.4.1 Management of Domains in Cache. The load register and store register
instructions are issued in the context of the currently executing object. As such they are
assigned the tag contained in t1 (i.e. capability to access the address) as a ticket to
present to the cache controller for accessing a particular cache line. This operation is

illustrated in Figure 26.

COMPARE

domain | cache line
[]

|

Figure 26 Domain Management for Load and Store Instructions

Store register with tag update and update tag instructions are issued in the
context of the currently executing object. As such they are assigned the tag contained
in t1 (capability to access the address) as a ticket to present to the cache controller for
accessing a particular cache line. They are also assigned the tag contained in tO for the
purpose of updating the domain. The domains are managed as illustrated in Figure 27.
Recall that the value in tag register t1 represents the currently executing object. The
domain field in the cache line indicates which object owns this cache line. These two

values must match for the load or store operation to be allowed. Otherwise, if the data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

L w0 [o |

COMPARE

| domain |, cache line |

A

Figure 27 Domain Management for Update Instructions

is not flagged global, a processor exception is initiated. If the operation is allowed, the
value in tag register tO is used to update the domain field in the cache line. Recall that
the value in tO represents the next object to be executed. In this context, next refers to
the next object to access the associated data. In the normal case tO and t1 hold the same
value. However, changing tO to another value allows an object to pass data it already
owns to another domain, effectively giving the associated memory away. This
mechanism will be utilized for passing arguments, sharing memory, and managing tags

in the heap space.

4.1.4.2 Load/Store Instruction Ordering. As can be seen in the discussion in
Section 4.1.4.1 data memory access must be performed with respect to tO and tl. In
advanced computer architectures instructions have the potential to be issued or allowed
to complete out-of-order with respect to the program. LOTA places the restriction that
instructions which update the domain field place a barrier which inhibits such
reordering of data memory access instructions when the target address is to the same
cache line. In other words, the store register with tag update and the update tag
instructions create a barrier in the processor which the load register and store register
instructions cannot cross in the instruction scheduling process. This barrier applies
only when the target cache line for a load register or store register instruction target

the same cache line as the instruction creating the barrier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

4.1.5 Memory Organization

LOTA puts an unusual twist to memory organization. As Figure 28 shows it is a
very familiar organization in most respects. Data in memory is organized as cache
lines. This is a logical organization emphasizing that the unit of transfer between the
processor and memory is the cache line. Programs operate on data in cache while the
processor manages the working set of cache lines with transfers between memory and
cache. The actual data transfer operation may be a single move of all data in parallel,
or may be multiple moves of individual words which make up the cache line. If
multiple moves are required, then the tag field will be transferred first followed by the
normal algorithm of transferring words in lines when tagging is not enabled.

The twist in LOTA is the additional tag bits. These bits are an optional part of
the memory system. The tag bits must be present to benefit from LOTA, otherwise the
system operates as a normal non-tagged machine. Data transfer is requested by the
processor but actual control of the memory cycle is generated as part of the memory
system. The processor passes control information to the memory controller. Part of the
control information is the flag indicating that object tagging is enabled for this transfer.
This flag is the state of the tagging enable (TE) control bit described in Section 4.1.2.

l B
Processor
i Memory

data

memory
controller

<@—— cache line

Figure 28 Memory Organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

65

When the TE bit is set data transfers include the data for the cache line as well as the
tag. The tag bits are transferred between the domain field in the cache line.

As presented LOTA wastes the tag bits when they are not used. This is true for
instruction memory as well as all memory in programs which do not utilize the tags.
There are methods to reduce this waste but such techniques would complicate the
discussion of the architecture. A method to use out-of-line memory (associating tag
memory to data memory at run time) will be discussed in Chapter 6. LOTA also
appears to complicate the implementation of a compatible family of processors by
limiting the selection of cache line size between family members. One possible
solution to this problem is to specify in the architecture a method for cache line size to
be discovered at run time. The run time system would then dynamically configure a
program to the cache line size. An alternative approach would require each
implementation to subdivide cache lines at specific levels each containing their own

tag.

4.2 Programming Considerations
In LOTA, the register sets are considered to be the exclusive resource of the

compiler and data in registers are not protected.

4.2.1 Domain Crossing

The most critical part of LOTA is the efficiency in which protection domains
may be changed. LOTA has a very simple instruction set for dealing with tags and
crossing protection domains. The process to cross a domain consists of loading register
t0 with the object to be called and executing the enter instruction to call a routine in
the target object. The process is complicated by the fact any previous tag value in t2
must first be saved. Figure 29 shows a pseudo-code fragment which would be suitable
for an object call. This code fragment does not deal with arguments to be passed. Lines
1 and 2 move the previous object’s tag in t2 to the stack since t2 will be destroyed in

the procedure call. Lines 3 and 4 initialize tO with the object identifier for the procedure

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

Domain Switch:

move t2 to rD

move rD to stack

load target object address into rD
move rD to t0

move procedure address to rS
enter rs

AU WN =

Figure 29 Domain Switch Pseudo-code

to be called. Line 5 moves the address of the procedure to be called into a register and
line 6 enters the new procedure causing a domain switch. This pseudo-code was kept
simple and each instruction should have a one-to-one translation into the assembly
language of most modem processors.

A closer look at the code in Figure 29 will reveal which instructions are required
in any procedure call and which ones are a result of overhead for support of the tagging
mechanism. Lines 1 and 2 save the previous value. These are surely overhead
operations. However, each procedure will only have to store the calling procedures
return tag once. Once saved any number of procedure calls can be made without
restoring this value. Procedures which do not call other procedures (leaf routines) do
not need to save the previous tag at all. Line 3 loads a register with the base address of
the object to be called. In C++ the pointer to an object’s data structure is an implicit
argument and hence this instruction would need to be performed in any event. Line 4
moves the object base address to the tag register t0, an overhead operation. Lines 5 and
6 implement the object procedure call in exactly the same way a normal procedure call
would be made. In this minimal example, three of six instructions are overhead and two
of these could be amortized across all procedure calls made while leaf routines do not

need them at all.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

67

Consider the C++ code fragment shown in Example 14 where A is an object. In

Example 14. C++ Method Call

A.fun();

this code fragment an object method call is demonstrated. The object method fun is
called with no arguments. Consider the translation of the C++ statement into a likely

C statement as the CFront C++ to C translator would produce. Example 15 shows the
Example 15. C Implementation of a Method Call

_A_fun(&d);

likely statement to be generated. Notice an argument has been added in the C
implementation and it is &A, the address of the object. This is the same value LOTA
uses to tag the data which the object owns. Passing the base address of the object as the
first argument makes sense as there may be many objects of the same type in the system
all sharing the same routines to manipulate their data. Each method (object procedure)
invocation must therefore identify which object implementation is to be operated on.
LOTA simply needs this argument to be copied to tag register t0 before the method call
(subroutine call) is made. Since the first argument to a subroutine is normally passed
in a register the only additional work in LOTA is to copy that register to t0, a single

register-to-register instruction.

4.2.2 Stack Management

Temporary data in LOTA is maintained on a stack. The stack is a special area
which needs to be shared between procedures, but yet stack space is controlied by the
compiler. Languages like C and C++ have no notion of a stack. Stack space gives the
compiler an efficient temporary storage location to enable it to pass arguments, save
register values that need to be re-used, and for allocating temporary procedure

variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

68

For an example of the problems associated with the stack consider Figure 30. In

top of stack

Figure 30 Stack with array

this figure an array, X, of 5 elements is stored in a stack and on either side of the array
is another program variable, a or b. Now consider what the programming errorin a C
source code statement such as X[5] = 0 would cause. An adjacent program variable
is overwritten. Although the stack is maintained by the compiler, simple programming
errors could undermine the integrity of such values. A major goal of LOTA is to limit
these types of errors from propagating to unrelated objects. Since the adjacent value
could possibly belong to another object, LOTA must protect temporary data on the
stack.

Another difficulty with stack management is the required sharing of data when
passing large amounts of temporary data. Consider the code fragment in Figure 31. In

#typedef struct Btype {
int x[100];
}:

main()

{
Atype a;
struct Btype b:;
a.fun(b);

}
as:fun(struct Btype b) {
for(int i=0; i<100; i++) b.x[i] = 0;

}
Figure 31 Structure passing code fragmezt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

69

this code fragment it can be seen that one routine is calling method fun in object a and
passing the structure b. If the structure b is large, then it must be passed on the stack.
This implies the calling routine must copy the structure to the stack and then pass it to
the method fun in object a. LOTA must therefore provide for the ability to create
temporary space which can be passed to another protection domain. This operation is
expected to be frequent and therefore must be very efficient.

LOTA provides two simple capabilities to make this sharing of stack space in a
protected method very efficient:
- Stack space can be claimed as needed.
+ One object may claim stack space for another object.
In order to claim stack space as needed a procedure only needs to use the store with
tag update instruction to store its temporary values on the stack. If the locations
where these temporary variables are stored are marked global (global in the stack

indicates the space is free) then the operation will be allowed. Figure 32 demonstrates

top of stac

Figure 32 Stack claim operation

how the stack is claimed. In the figure stack is illustrated as cache lines and the
shaded part indicates the example area claimed by a procedure. Each time a store with
tag update instruction is applied to a cache line marked global it claims the space
according the to value stored in t0. There is no overhead involved in claiming stack
space.

When a procedure is finished using its stack space it must return that space. This
requires one update tag instruction for each line of space it claimed. The instructions

executed to return stack space are overhead operations inherent in LOTA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

70

There are several ways to share data on the stack between procedures. Space
could be claimed by the calling procedure and then given to the called procedure prior
to making the call. Another possibility would be to store the values to be shared on the
stack without claiming them. The claim operation could then be performed by the
called procedure as it sees fit. The method described here will be a compromise

between these two possibilities. The method is demonstrated in Figure 33. This figure

top of stac

store rS in stack and update stack address
store rS in stack with tag update
jump to procedure

Figure 33 Stack claim for argument passing

demonstrates a partially completed stack frame to be passed to another procedure. The
last line of this stack frame has yet to be completed. The pseudo instruction sequence
shows how the last two values might be saved on the stack before a procedure call is
performed. The second to last value is stored with a normal store instruction leaving
the space it occupies as unclaimed stack space. The final value saved on the stack uses
the store with tag update instruction to claim the space. Assuming tO has been
initialized with the domain value of the object which the procedure to be called is part
of, then this stack frame will be owned by the called object.

Just as before, this newly claimed stack space must be returned. But in this case
it is up to the called procedure to free the space claimed on its behalf. This
demonstrates that claiming stack space in any case is essentially free of performance
penalties. However, to return the space requires one memory store operation per line

allocated. This overhead will be evaluated in the analysis presented in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

71

4.2.3 Heap Management

LOTA can handle the management of heap space in several ways. The method
presented here will be a straight forward and simple method. All heap space begins
existence with tags initialized as owned by the heap space manager. When a call is
placed to the heap space manager it allocates the space required, in terms of cache
lines, and then updates the tags with the corresponding object identifier. This
represents an overhead of one write per line allocated. This overhead must be repeated
to return the space back to the heap manager. This overhead will be evaluated in the

analysis presented in Chapter 5.

4.3 Qualitative Analysis

4.3.1 Defect Detection

LOTA primarily uses the encapsulation of object data as the means to detect
software defects. This is the same as all the capability-based and object-based systems
presented in Chapter 3. Several important defect types can be trapped by object-

encapsulation.

Array Bound Access Errors. Array bound read and array bound write defects are not
allowed to violate object boundaries. All such errors which attempt to violate object
boundaries are trapped immediately. Array bound write errors have the potential to
corrupt data which belongs to a different object. When defects are propagated in such
a manner they are particularly hard to trace to their root cause. LOTA traps all such
potential data corruption defects and will identify exactly which object needs
debugging.

If objects are chosen carefully to place arrays inside their own object, or if
compilers can lay out the data to reserve adjacent memory as non-allocated space,
LOTA can be used to detect a finer granularity of software defects. Unlike Purify,

LOTA has no restrictions on where arrays are located for its protection mechanism to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

72

apply. Purify can only detect array bound access errors when the array is allocated
from heap. In fact, Purify can only detect if the memory being accessed is currently
active but has no idea what object it belongs to. This in inherent in its technology
application of object code insertion which has no information about the actual
structure of the program. If an array bound read or write error is far enough off course

to be a valid address of an object adjacent in memory the access would be allowed.

Free Memory Access Errors. Free memory read and free memory write errors are
completely eliminated with LOTA. Since all memory returned to the heap is
immediately marked as belonging to the heap space manager, all accesses to this
memory will be trapped. Purify can detect accesses to the free space as well. Safe-C
has some restrictions on use of pointers. Converting pointers to integers and integers
to pointers, as is often done in C programs, can cause problems with Safe-C’s ability
to maintain state of a pointer. When these restrictions are not violated then access to
memory returned to the heap is detected. Even still, Safe-C adds a capability field to
the pointer context to indicate the object pointed to has been freed. A significant
amount of software overhead is incurred to maintain this structure. Systems based on

capability-based addressing can easily detect access to free memory.

Pointer Defects. Two closely related defect types are the dangling pointer defect and
the pointer corruption defect. In the dangling pointer defect a pointer remains active in
a program after the memory it points to has been returned to the free space. The
corrupted pointer defect as its name implies is the problem of a pointer to memory
being mistakenly altered, but yet remains within the address space of the program.
Both of these errors have an enormous potential to cause memory corruption in
unrelated areas of the software and are extremely difficult to debug. Capability-based
systems can ordinarily catch such problems but must use careful design. When
capabilities and the address they point to are kept together and allowed to be copied

then some care must be taken in software to avoid valid capabilities to point to objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

73

which have been destroyed. When capabilities and the memory they point to are kept
in separate data structures, such as in the iAPX432 or System/38, duplicate capabilities
for the same segment all point to the same segment descriptor. Such systems only need
to mark in one place the object is no longer available. Even so, such systems must take
care when the names of capabilities are reused. System/38 avoids this problem by
having such a large address space and managing it with the policy that addresses for
segments will never be reused.

In LOTA any access to memory must be to memory which is currently owned
by some object. Any access to free space for any reason will be denied. There is no
opportunity to have a valid capability to an address in free memory. In addition, if
memory is assigned to another object it will still be outside the scope of access for any
previous object that owned it. There is only one case where LOTA does not detect
dangling pointer or corrupt pointer access errors, the case where the memory it points
to is assigned again to the same object it was before. It is impossible for LOTA to tell
if such a memory access is intended. However, the defect is still limited to within a
single object.

Safe-C uses the same mechanism described for detecting free space access
errors to detect corrupt or dangling pointer accesses. Safe-C has the advantage that it
can determine this fact even when the memory is used again by the same object. For
Purify it is only possible to know if the reference is to a valid memory location. If the
defect causes an access error to free space it can be detected, but if the memory location
is active by any object in the program then the access will be allowed. To help detect
dangling pointer defects Purify adopts the memory allocation policy to delay for as
long as possible the allocation of 2 memory block set free. Purify has no mechanism
to detect corrupt pointer defects unless they accidentally point to a memory location

not active at the time the pointer was used.

Uninitialized Memory Read Errors. Uninitialized memory read errors were the

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

74

most frequent reported in Chapter 2 for the survey of software defects. There errors
were the least likely to cause a program failure and are more closely related to bad
programming practices contributed to by the poor character handling facilities
supplied by UNIX and libraries. Nevertheless, use of uninitialized memory can cause
variation to specification for a program and are an important type of error. LOTA only
provides limited resources to be applied to this problem as presented so far. Any read
of variables outside the domain of the object is flagged. If the uninitialized memory is
used as a pointer, or in the calculation of a pointer value, then it is likely to point to
memory outside the domain of the object and be trapped by LOTA. This is the same
limited capability as all the other systems presented in Chapter 3 with the exception of
Purify. Since Purify maintains the state of a memory location it can detect when that
location is read before it is written regardless of which object may be executing.
Although LOTA has limited capability to detect uninitialized memory accesses it does
have the potential to use tags associated with memory to be used for help in this area.
Such possibilities are explored in Chapter 6. As a minimum, LOTA restrains such

errors to object boundaries.

4.3.2 Domain Crossing

In LOTA a very simple mechanism is used for the software to convey to the
hardware what object is executing and what memory it should have access to. The
mechanism is a register update operation. The value which is used to program the
register is the base address of the object. To programming languages the base address
of an object is referenced by the name of the object. Since the name space in the
program is compietely understood by the compiler, it can easily manage object-based
protection. In other words, a compiler can control protection domains using object
names, names from the name space it already controls. There is no indirection and the
values used for naming the protection domain is most likely to already reside in a

general register due to normal subroutine calling conventions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

75

Purify and Safe-C have no protection mechanism to compare with. But
compared to capability-based addressing schemes this eliminates the inherent
indirection. System/38 and the iAPX432 required a level of translation to convert
capabilities into virtual addresses using a two level lookup table. The inherent
indirection required the processor to cache the translations as the lookup was quite
expensive. Only when capability translations were cached was domain crossing
efficient. In the iAPX432 a new context object must be created for the new domain.
Even when pre-allocating these objects it was still relatively expensive to initialize
their contents.

The Denelcor Heterogeneous Element Processor (HEP) was truly able to switch
domains in the common case very quickly. The common case was designed to be
between active threads of a program. But this requires a large number of registers in
the processor to hold the state of each domain. There were no mechanisms to load state
of a new thread and protection domain in a rapid fashion. HEP would need to be
expanded to a large number of small protection domains to be useful in object-based
protection schemes.

The most interesting of the capability-based addressing designs is the use of
guarded pointers in the M-Machine. Guarded pointers are used to provide a solution to
the same problem addressed in HEP, the need to interleave instructions from multiple
independent threads of execution potentially from multiple protection domains. The
compact encoding of a capability eliminates the indirection of System/38 and the
iAPX432 which must first translate a capability into a virtual address of an object. The
guarded pointer still does not address the efficiency of one of these threads calling
another one in a different protection domain. The penalty of such an operation has the
potential to be must less than in the HEP, but there is still considerable overhead in

clearing registers of capabilities and setting up shared space to pass arguments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

76

4.3.3 Abstract Data Type Implementation

Noted earlier was the fact that capability-based addressing and the programming
language concept of abstract data types were solutions to the same problem. The
structure of software is modularized to reduce the scope of software defects and reduce
the maintenance requirements. Object-based systems propose a complimentary system
design implementing both capability-based addressing and abstract data type
implementation. LOTA adopts the philosophy stated by Wilkes [45] that capability-
based addressing and abstract data types are competitive solutions. LOTA does not
attempt to provide a complete understanding in hardware of what an abstract data type
is. Instead, it leaves the implementation of abstract data types to the compiler and
provides the compiler a simple tool to help assure the information hiding principle is

not violated.

4.3.4 Resources

In order to support fast domain changes in the multithreaded architecture of the
HEP many registers were required to hold the state of several processes at one time.
These resources are very close to the processor and to increase these resources to
support many objects active at one time in different protection domains would be
prohibitive.

Capability-based addressing systems require large amounts of local storage in
the form of a cache to avoid repetitive lookup operations. The cache requirements are
in addition to, and in resource competition with, the normal data cache. All of the
capability-based addressing systems, with the exception of the M-Machine, presented
in Chapter 3 were supported in microcode. The complexity of the operations to
generate capabilities and check access rights made this necessary. All of these
additional resource requirements occurred very close to the processor, in the form of
additional registers, microcode, and cache.

LOTA pushes the resource requirements farther away from the processor. The

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapnw.manaraa.com

T

processor itself has three additional registers and associated data paths. The cache
contains the largest additional resource requirement, there is an additional field for
each cache line equivalent in length to a tag register. Actual cache implementations
may allow the number of bits in this field to be reduced. In addition to the extra field
in a cache line, LOTA requires a comparator to check the cache line domain with that
of the currently executing object. If the cache is organized as set associative then this
comparator will need to be duplicated by the number of elements in a set (i.e. in a2 4-
way set associative cache there are four elements to check in parallel). Although this
extra field in a cache line may prove expensive, there is no need for other cache
structures to support the protection mechanism. The management of tags in the cache
causes very little additional logic to be associated with protection. Cache lines are
transferred between cache and memory autonomously with respect to protection. If
tags are included in the transfer they are moved as if they were data. The greatest
requirement for resources in LOTA is the additional tag bits in the memory system.
Every block of memory, the size of a cache line, contains an extra set of tag bits of
length equal to an address in the processor. But notice the overall resource
requirements, the smallest requirement is placed close to the processor where
competition is probably greatest. The requirements in the cache are larger. The largest
requirement is in the memory system, the farthest point away from the processor. This

is where resources are probably the most affordable and easy to make optional.

4.3.5 Stack Management

Fabry suggested the stack be a hardware-managed stack of processor registers
[46]. Unfortunately, even though the stack is controlled by the compiler, it is shared
with program variables. An array which is accessed with an out-of-bounds index could
potentially effect variables on the stack of other objects. LOTA allows normal stack
manipulation within a routine. However, stack space used by one object is not

accessible by another. As with ordinary programs stack is used as needed, but the act

Reproduced with permission of the .copyrightowner. Further reproduction prohibited without permissionyz\w\w.manaraa.con

78

of using this space also claims it. Once claimed it is impossible to access the space
without help of the object that claimed it. The stack allows protected sharing for the
purpose of passing arguments and return values. The cost of this design is one tag clear
operation for each line of stack space set free. For small stack allocations, as they are

expect to be, this represents a minimal cost.

4.3.6 Heap

Heap space management will include the added complexity of allocation on
cache line boundaries. Each line allocated or deallocated must have its tag updated. For
programs which allocate small or infrequent blocks of memory from heap this tag
update penalty will be small. Since memory is allocated in terms of cache lines there
will be some small amount of space allocated above what is requested. If heap
allocations are random in size the expected wasted space will be one half of a cache
line per heap allocation. Compare this to the potential wasted space in the M-Machine
where heap must be allocated in power of two sizes. In this machine the space wasted,
given random allocation sizes, will be 25 percent. Chapter 5 will analyze the tag

overhead for heap allocation as well as heap utilization.

4.3.7 Simplicity

Although LOTA adds some complexity in the compiler in order for it to handle
tags the rules for tag manipulation are straight forward and simple. The rules are:
- Initialize tags for heap allocation.
+ Clear tags for heap deallocation.
- Claim tags for stack allocation.
+ Clear tags for stack deallocation.
These rules for managing tags are consistent and are not effected by frequency or size
of memory allocated in heap or stack space. Only the overhead of the operations vary.
Once the tags are initialized properly the only complications the compiler must deal

with are allocation of memory in terms of cache lines and managing the tag registers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

79

44 Segmented Alternative

LOTA uses a limited support in hardware to derive its benefits. So far LOTA has
only been compared to other systems which have complete support for system level
security or are software only systems to detect software defects. This section provides
a comparison of an alternative design which also provides limited hardware support to
allow the compiler to control protection domains for objects within a program.

The use of segments is most often mentioned in the scope of providing bounds
checks for accessing memory. In this scheme objects or arrays are allocated one to a
segment. Figure 34 demonstrates how address generation is performed in a processor

using segmentation. A segment is identified by a base and a bound denoting the start

instruction
basey. memory segment
ppcode{sr| offset | Dasey, ry segm
i = memory resident
segment registers I;i
- - segment table

fault signal

Figure 34 Segment Address Generation

and end address for a segment, respectively. Instructions must specify a segment and
an offset to access memory. Segmented architectures customarily contain segment
registers which are loaded as needed from a segment table. The segment table contains
an entry for all segments which can be reached within a protection domain.
Instructions specify the segment register which has already been loaded with the
segment information. Each entry in the segment table is a data structure called a
segment descriptor and contains all the necessary information about the segment. The
processor must make sure the offset specified in the instruction is within range of the

segment bound and generate a fault if it is not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

4.4.1 80386 Processor
The 80386 processor is the first in a family of processors which is capable of 32

bit segment addresses with 32 bit segment sizes for generating 32 bit linear addresses
to be used as program addresses for accessing memory [47]. In effect, the processor
applies segmented address space management to generate program addresses to be
passed on to a traditional memory management unit and cache unit. This segmentation
capability has often been discussed in the Internet news groups for its application to
array bounds checking and even in the possible application of one object per segment
protection domains [A.1}]. Before comparing LOTA to a base and bound approach to
object-based protection a discussion of the 80386 segmented architecture and its
application to object-based protection will be presented.

The 80386 contains six segment registers (sr) which provide an index into one
of two segment tables and a flag to choose between the tables. These tables are known
as the global descriptor table (GDT) and the local descriptor table (LDT) and are
shown in Figure 35. Descriptors in the descriptor tables are all 64 bits long and provide
a 32 bit segment base address and a 20 bit segment size limit along with protection
information. The processor contains a global descriptor table register (GDTR) to point
to the global descriptor table and a local descriptor table register (LDTR) to point to
the local descriptor table.

instruction ¢
{ opcode |sr]| offset | memory segmen
|
" + .
segment registers descriptor tables
index hidden gy i iobal " local
It & s
ds GDT| |LDT
(] — -
fs —— ’ PR
gs -

Figure 35 80386 Segment Addressing Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.con

81

Program addresses are generated as shown in Figure 35 and is very similar to
that shown in Figure 34. The instruction provides the segment register (sr) to use, or
one is implied, and the base is combined with an offset while the offset is compared to
the limit. The segment registers may be freely loaded from the descriptor tables by the
compiler. However, the segment register is actually maintained by the processor as a
visible part and a hidden part with respect to the program. The visible part simply
contains the offset into the descriptor table and a flag to indicate which descriptor table,
but the invisible part contains the base address of the segment as well as the segment
size and some protection information. In other words the segment number used to load
the register from the descriptor table is visible to the compiler but the register actually
contains all the remaining information about the segment in hidden fields. In this way
the processor contains all the protection domain information relevant to access a
descriptor as state inside the processor while not divulging the information to the
program or compiler.

The 80386 has many limitations in the application of its segmented architecture
to object-based protection. First, the descriptor tables can only be modified by system
software. They are designed to provide process-based protection by defining the entire
address space a process has access to. The table in fact defines the protection domain
for a process. To add new objects to the system would require operating system
intervention, something much too costly. The local descriptor table only has entries for
8,192 entries. If each object required four segments (code, stack, and two data
segments) then only 2,048 objects could be active at any time during the life of the
program. This is much too limited for the general case.

It is evident that the standard design of the 80386 is meant for process-based
protection and would not apply well to object-based protection. Even on a process base
using segmentation to support protection has its problems. Compilers must keep
loading the segment registers to access different segments. Primarily the segmented

capabilities of the 80386 have been used to provide a faster 8086 compatible processor

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

82

which does not use the protection aspects of segmentation. The segmented model is not
well suited to the simple paging protection of UNIX either. In fact the segmented
protection mechanism has not been used by any major commercial operating system

{48].

4.4.2 Modified 80386 Segmented Architecture

To give a more balanced comparison with LOTA consider the modified 80386
segment addressing scheme in Figure 36. This new model only shows the part of the
modified 80386 which is under the control of the compiler. The global segment table
still exists but requires operating system help to modify and is therefore not shown. [n
this modified model the local descriptor table and local descriptor table register have
been renamed the object descriptor table (ODT) and object descriptor table register
(ODTR) to emphasize they now define the protection domain for one object. The
resulting segmented architecture will allow compiler control of segments for object-
based protection without operating system intervention and without limitation on the
number of objects active in the system.

In the modified 80386 the compiler controls the protection domain by loading
the ODTR to point to the table defining the domain for an object and managing the
segment register values from this table. On object calls the ODTR must be changed and

instruction memory segment
[opcode [sr] offset]
+ object descriptor
segment registers ¢ .1, table
cs
ODTR ss s
ds oDT
es -
fS - — -
gs -—

Figure 36 Modified 80386 Segmented Addressing

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

&3

any values in the segment registers must be cleared. Notice the similarities to the
Plessey 250 where capability registers specified the address space available to
instructions while capability segments defined the full range of the available address
space. The modified 80386 requires an object descriptor table for each object just as
the Plessey 250 required at least one capability segment for each procedure. Just like
the capability segments, object descriptor tables will be many and will ordinarily be
small. These small tables must be managed by the compiler.

A new enter instruction must be defined which changes the program counter and
the protection domain at the same time. The operands to the enter instruction must
therefore include the target address and the target ODTR value. Just as in LOTA, the
old value of the protection domain must be saved for reuse on return. If the called
routine is not a leaf routine the ODTR must be saved and restored exactly as required
of tag registers in LOTA.

When a new protection domain is entered ordinarily the code segment must be
changed. In the modified 80386 model it will be assumed the code segment is global
and does not require a change. The stack segment must be changed and still allow
sharing between procedures for argument passing. This could probably be
implemented fairly efficiently by a large global segment with sliding base and bound
values.

Up to this point it can be said that handling the LOTA tag registers for protection
domain changes is similar in complexity of handling the ODTR in the modified 80386.
The stack handling overhead for the modified 80386 probably excels in efficiency as
the size of the stack allocation goes to larger values. On the other hand LOTA requires
several fewer instructions for changing the protection domain because it has no

additional register to clear and load to define addressing capabilities of instructions.

Tags Versus Descriptor Tables. Recall that descriptors are each 64 bit values. Given

the average size of an object is 256 bytes [40] the overhead in memory utilization for

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

&4

an object with just two segment descriptors would be 6.25 percent. For a LOTA
implementation with 32 bit addressing and 256 bit cache lines the overhead would be
12.5 percent. In LOTA this is a fixed cost to implement the memory system while in

the modified 80386 design it is a variable cost and reduces the available memory.

Pointer Representation. In the 80386 a pointer is no longer capable of being
represented by a single 32 bit quantity. In order to include the segment identifier a
pointer must be represented by a 48 bit value. This represents a 50 percent overhead in
pointer representation and must be included in the memory utilization calculations. In
a RISC design this odd size would itself cause memory alignment problems. The
compiler must determine if the segment identifier is already contained in a segment
register when the program uses a pointer. The determination itself may take extra
instructions and if the segment is not already resident in a segment register then a
segment register must be loaded. The instruction will either imply the use of a specific
segment register or it will identify a segment register explicitly which means a pointer
will have to be loaded in the exact segment register specified in the instruction to use

it leaving less flexibility for the compiler to determine register usage at run time.

Descriptor Table Management and Dangling Pointers. The descriptor table must
be managed by the compiler. When a new memory segment is to join a protection
domain the compiler must allocate new space in the descriptor table. The compiler
must therefore maintain the descriptor table in memory space where there is room to
grow. The compiler will probably need to maintain the current descriptor table size in
a variable or register somewhere to make sure an index specification does not reference
an out-of-bounds descriptor location. Once a descriptor is allocated in the table it can
never be removed from the table, but must instead be marked invalid to avoid future
use when the segment is destroyed. If this rule is not followed then it would be

impossible to ever catch a dangling pointer error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

85

The Bottom Line. In the final analysis LOTA compares well to a segmented approach
to object-based protection within a process. When stack and heap space are allocated
in small quantities LOTA compares favorably with segment management. It compares
less well for large allocations. Domain crossings, especially when accompanied by
small stack spaces, are much more efficient in LOTA. In segmented systems pointer
representations are complicated and require segment checks to dereference along with
frequent loading of the segment registers. To catch dangling pointer errors a segmented
approach must not reuse a descriptor entry in a descriptor table.

The strongest argument in favor of LOTA is its simplicity. The complications
LOTA imposes is limited to allocating memory in terms of cache lizes, setting the tags,
and keeping the tag register up to date. These chores are simple and consistent. The
mechanisms are applied equally easy to large or small quantities and there are no
additional complications to the number of non-contiguous memory pieces allocated to
one object or the program as a whole.

In the case of segmented systems the number of segments allocated to an object
requires management in a dynamic table. Each and every object must have such a table.
Pointers must be handled as segment identifiers and offsets. Segment registers must be
carefully managed. Segment descriptors and pointers do not fit in a normal word for

the processor and require multicycle transfers between memory and register.

Defect Detection and Security. Both systems attempt to solve a part of the software
defect problem with the same solution, to limit the realm of damage a defect may cause
to an object boundary. As such, they both succeed in their goal. In addition, both
systems may be capable of sufficiently efficient operation to allow their use over the
entire software life cycle. There is one more area that must be considered and that is
which one offers a more secure system. Recall in LOTA the only way to effect the
protection domain is by use of the tag registers. Once a memory location has been

tagged it is impossible to access unless the tag register is set to the correct object value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.con

86

In LOTA setting these tag registers does not require a special privilege. However, in a
high leve! programming language there is no way to accidentally change a tag register.
This is because there is no syntax offered in a high level language to allow an
instruction to reference the tag registers. The compiler must generate the code to
change these registers. LOTA maintains the protection domain in processor registers
which cannot be named by the programming language.

Now consider the segmented system. The descriptor table base address is stored
in a processor register. It does not actually identify the protection domain directly, but
indirectly points to the table which defines the protection domain. The actual
protection domain is the values stored in the object descriptor table. The descriptor
table is managed by the compiler in memory that is currently accessible by the
protection domain of the object. This implies there is a possibility that a software
defect at the source code level could lead to memory corruption within the object that

compromises the object-based protection mechanism.

The Tag Advantage. There are several classes of software defects which can be
caught with object-based protection. But there are other problems which cannot be
caught with this solution alone. Since LOTA uses tags there exists additional
opportunities to expand their functionality to apply to other types of software defects.

Some of these possibilities will be explored in Chapter 6.

4.5 Information Flow

Tags in LOTA convey information about the domain data exists in with respect
to objects of a program. The information is used to detect software defects. A standard
program must be augmented with instructions to use and maintain tags before this
benefit can be derived. This section will analyze the inherent added flow of information

between the processor and memory system and any possible consequences.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

4.5.1 Von Neumann Computer

A simple definition of a von Neumann computer is a computer containing a
central processing unit (CPU), a memory (store), and a tube connecting the CPU and
store. The CPU communicates with store by sending an address down the tube. Also
flowing down the tube is data which corresponds to the address. The tube is known as
the von Neumann bottleneck [49].

A greater concern than the existence of this tube as an actual bottleneck is the
evolution of popular conventional programming languages as high level, complex
versions of the von Neumann computer. These so called von Neumann languages
require the programmer to think in terms of this tube and operate a word-at-a-time
towards the solution to a problem. C and C++ are examples of popular von Neumann
languages. Although C++ offers programmers the ability to define complex types with
behavior closer to the natural objects in the problem domain, it is still based on the
primitive construct of the assignment statement.

LOTA imposes extra complexity in the compiler to maintain the domain
information in tags and to manage the processor notion of current domain. However,
this complexity does not show through to the programmer. LOTA offers nothing which

alters the picture with respect to the von Neumann languages.

4.5.2 Tag Information Flow

Although LLOTA does not effect the programmer’s view of the computer it does
require additional information flow between CPU and store for the program to take
advantage of the added protection. This added information flow is a result of the extra
instructions the compiler needs to insert into the program to manage tags and domains.

The analysis of added information flow in LOTA can be divided into the inherent
added flow and the implementation added flow. The implementation information flow
can be represented in clock cycles as the difference between execution times of a

program which is compiled with and without protection in LOTA. Although this unit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

88

of measure is not in terms of information flow it does represent the penalty associated
with the added information flow for its implementation.

In this section only the inherent added information flow for LOTA will be
evaluated. For this evaluation the only information flow of interest is the required,
unavoidable transfers of instructions and data between CPU and store. In particular the
effects of the implementation of the tube between processor and memory are excluded.
To exclude this effect can be easily done by declaring the unit of transfer for data to be
the cache line which includes the tag. For instructions the unit of transfer is a single
instruction.

Using these definitions of transfer units the added information flow in LOTA can
be expressed as the sum of tag manipulation instructions and tag only data transfers.
There are only two instructions which manipulate tags, the store with tag update and
the update tag instructions. Only the update tag instruction results in a tag only data
transfer. Therefore the inherent information flow penalty (IFP) in LOTA can be stated
as in Equation 1.

IFP = 2 e number of update tag instructions (EQI)
The 2 in Equation 1 represents one instruction transfer and one tag only data transfer
between CPU and store.

There are only three places in LOTA where tag update instructions are required.
These places are the release of stack space, heap allocation, and heap deallocation. In
each of these three places tags must be initialized independent of data transfers and
requires one tag update operation per cache line involved. Let stack release in lines be
represented by SRL, heap allocate in lines by HAL, and heap deallocate in lines by
HDL. Then the information flow penalty (IFP) can be represented by Equation 2.

IFP = 2(SDL + HAL + HDL) (EQ2)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

Chapter 5

Analysis

A quantitative analysis is provided for a possible implementation of LOTA. An
88110 processor is used as a base architecture. The 88110 was selected because of the
availability of the following items:

- 88110 computer running UNIX System V Release 4

+ CFront C++ translator

+ Cycle accurate simulator

- Source code for the simulator

In particular the source code for the simulator was required. Gathering the experimen-
tal data for this chapter would have been impossible otherwise. Section 5.1 will
present the 88110 as a base implementation for LOTA. Section 5.2 will present the
experiments including the simulator, software, and measurements. Section 5.3 will

present the results and analysis.

5.1 Implementation of LOTA

5.1.1 The 88110

The 88110 is a general purpose microprocessor using the reduced instruction set
computer (RISC) design philosophy [50]. A block diagram for the 88110 is shown in
Figure 37. The processor has two register files. The general register file supports
integer operations while the extended register file supports floating point operations.
The processor has several independent execution units which all take operands from
one of the two register files and deliver results back to one of these register files. The
instruction unit is responsible for fetching instructions, scheduling their execution,
tracking resources, as well as processing change of flow instructions. The data unit is

responsible for executing all instructions which access memory.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

Integer Integer Bit-Field Multiply Divide Floating Pixel Add } | Pixel Pack
Execution | | Execution | | Execution | | Execution | | Execution Point Execution | | Execution
Unit Unit Unit Unit Unit Add Unit Unit Unit

I H B N R R R
i v y

General | [Extended§ | Target Superscalar
8‘1‘3 Register| | Register | {Instructionf®*®] [nstruction
File File Cache Unit
8KB 8KB
MMU | Tags Data Cache Instruction Cache Tags | MMU

Y

Bus Interface Unit

Figure 37 88110 Block Diagram

Internally the 88110 is a harvard architecture with separate paths to memory for
instructions and data. The instruction execution unit fetches instructions from the
instruction cache and instruction memory management unit (IMMU). The data unit
performs all data accesses by use of the data cache and data memory management unit
(DMMU). The harvard architecture ends there as both cache units use the same bus
interface unit to gain access to the external address and data bus.

The instruction execution unit is in charge of the information flow through the
88110. It fetches instruction pairs from the instruction cache and is capable of issuing

two instructions to separate execution units in each clock cycle of the processor. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

91

execution units only operate on data supplied by the register files and only deliver
results to the register files, a standard RISC register-to-register design. The only
instructions which access data memory are the /d, sz, and xmem instructions.

This is a simple description of the 88110 processor and more detail can be
obtained from the user’s manual [51]. The important traits of the 88110 which make it
an excellent target implementation for LOTA is its RISC design, clean architecture,
and independent data memory unit for executing all instructions which access memory.
These traits lead to an explanation of the design through simple block diagrams that

clearly demonstrate the major components and information flow through the processor.

5.1.2 110L

The LOTA implementation of the 88110 processor is called the 110L. The
programming model is shown in Figure 38. The model presented is exactly the
standard model for the 88110 with the addition of the tag register file. The extended
and general register files have already been explained and the fcr63 and fcr62 registers
implement the required status and control for floating point operations according to the
IEEE 754 floating point standard. The control registers include all the status and

control information for the normal operation of the processor. These registers are

- —_—_ s - |
i x0 Zero 0| zero | i cr0

x1 rl crl
I Extended General I Control
- Register | JRegister] ! egiste
i ’ File P4 E File r |
| X310 I 31 | cr51
| fer62 t0 | fer0 (]
I fcr63 tl |
| ©2 - |

Tag Register File
| User ProgrammingModel _!
Supervisor Programming Model

Figure 38 110L Programming Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

2

exactly the same for the 88110 and the 110L with the exception that the data cache and
memory management unit control register will implement the rag enable bit required
by LOTA. This addition will be discussed along with the data cache and memory
management below.

As presented in Chapter 4, LOTA only involves the data access instructions and
the data path to memory. Figure 39 presents the data access path from Figure 37
modified for the 110L. In the figure the addition to the 88110 design for
implementation of LOTA has been highlighted by shading. The tag register file has
been shown as part of the data unit to emphasis its closely linked operation. The data
path between the tag register file and the internal data bus is only utilized for

transferring tag registers to and from the general register file. Memory access

Internal Data Buses

:

Data
Unit

Bus Interface Unit

Figure 39 110L Data Access Path

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

93

instructions are managed by the data unit in the context of the domain specified by the
tag registers as described in Chapter 4. The Rorate flag is passed from the instruction
sequencing logic to indicate an enter instruction has been issued to change protection
domains. The data cache has been expanded to include domain tags for each cache line
along with the control logic to perform access checking. The bus interface unit along
with its data path to the data cache have also been enhanced.

5.1.2.1 Instruction Set. All of the instructions defined for LOTA are implemented.

Load Tag Register. The load tag register instruction is implemented with the syntax
ldcr rD,tS . Execution of this instruction will cause the tag register tS to be transferred

to general register rD.

Store Tag Register. The store tag register instruction is implemented with the syntax
stcrrS, tD . Execution of this instruction will cause the general register rS to be

transferred to the tag register tD.

Enter Protection Domain. The enter protection domain instruction will be
implemented with the syntax enter rS. 1S contains the address of the subroutine. The
return program counter is copied into rl. This instruction is a variation of the jump ro
subroutine instruction of the 88110 where the Rotate flag is sent to the tag registers to

implement the domain change as defined by LOTA.

Return From Protection Domain. The return from protection domain instruction is
implemented with the syntax return. The address used for the return is contained in
rl. This instruction is a variation of the jmp rl instruction of the 88110 where the
Rotate flag is sent to the tag registers to implement the domain change as defined by
LOTA.

Load Register. The load register instruction is unchanged from the standard /d

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

instruction of the 88110.

Store Register. The store register instruction is unchanged from the standard sz
instruction of the 88110.

Store Register with Tag Update. The store register with tag update instruction
substitutes st in the syntax of the sz instruction to indicate that if the store operation
is allowed the tag should be updated with the value in tO as required by LOTA.

Update Tag. The update tag instruction substitutes szz in the syntax of the sz
instruction to indicate that if access is allowed to the specified location then the tag

should be updated with the value in tO as required by LOTA.

5.1.2.2 Imnstruction Unit. The instruction unit must also be enhanced for the 110L
but its changes do not show up on a block diagram. There are three basic
enhancements: knowledge of tag registers and domains, issue logic for the added
instructions, and hazard information for instruction issue constraints. The instruction
unit implements the load tag register and store tag register instructions directly,
transferring the appropriate tag and general register values by gating the information
over the internal buses. It also implements the enter domain and return from domain
instructions. These are implemented as normal subroutine call and return sequences
but accompanied by the Rotate control flag to indicate a protection domain change. All
the other tag related instructions are issued to the data unit for execution.

The 88110 implements the instruction issue logic by implementing two issue
slots. These slots, labeled issue slot 0 and issue slot 1, are filled with instructions from
the program in the order contained in the program. The 88110 issues instructions in
program order but allows for their completion out-of-order. It may issue up to two
instructions per clock. To maintain program issue order the issue slots are filled in
order. Issue slot O must be issued before, or at the same time as, issue slot 1. In some

cases both issue slots cannot be issued simultaneously due to a conflict in the resources

Reproduced with permission of the .copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

95

needed by the respective instructions. These conflicts are referred to as issue
constraints. The 110L contains all the same issue constraints as the 88110. In addition
it contains the constraint that two tag related instructions cannot be issued
simultaneously. Since the data unit already has the constraint that it can except a single
instruction per clock cycle the 110L adds no additional constraints for tag instructions
issued to the data unit. However, the enter protection domain and return from
protection domain instructions also effect the tag registers. Therefore, the 110L has the
additional issue constraint that these instructions cannot be issued in the same cycle as
instructions to the data unit. This constraint is exposed to the compiler for optimization

of instruction ordering.

5.1.2.3 Data Unit. The data unit in the 88110 is the most complex execution unit and
performs all data memory access. There is an arithmetic unit on the input of the data
unit in order to perform address calculation. Any information the data unit needs in
order to perform address calculation, namely the value of a register or immediate value
encoded in the instruction, must be available at the time of instruction issue. The data
unit can accept one load or one store instruction per cycle. After immediate address
calculation the instruction is inserted into one of two first-in-first-out (FIFO) queues.
Load instructions enter the load buffer queue while store instructions enter the store
reservation station queue. The FIFO organization of these queues imply that store
instructions flow in program order with respect to other store instructions. The same is
true of load instructions. Having two separate FIFO queues could allow load and store
instructions to flow out-of-order with respect to each other. The 881110 allows only
load instructions to flow ahead of stalled store instructions. Once an instruction flows
to the end of the queue it enters a two stage pipeline to access the data cache.

The load buffer is a four deep FIFO and the store reservation station is a three
deep FIFO as shown in Figure 40. The only difference between the 88110 and the 110L
is the domain fields which are added to each instruction as required by LOTA. The

store FIFO is implemented as a reservation station to indicate that the register value

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

(address calculation)

4 e
v Load Buffer Store Reservation Station
address| register | tl -
—— - address] register | 10 tl
::x :g::: ; : address| register | 10 ti
address| register |t address| register 10 tl
Data Access Pipeline

Figure 40 110L Data Unit

being saved does not have to be known at the time the instruction is issued. As long as
the register value becomes available before the instruction reaches the bottom of the

FIFO it will not stall the FIFO.

Data Hazards. The 88110 does not allow a load instruction to pass ahead of a store
instruction that is referencing the same memory address. A memory conflict would
occur otherwise. To perform this check the data unit compares the address field in store
reservation station entries to the address in load buffer entries. Any match creates a
barrier which the load instruction cannot pass. To simplify implementation in the
88110 the address match is performed only on the most significant 20 bits of the
address. The lower 12 bits are ignored. These 12 bits represent 4096 bytes of storage
and is also the size of a store page in the memory hierarchy. Therefore, load
instructions cannot advance ahead of stalled store instructions when their address fall
within the same page of memory.

The 110L must also assure that all instructions which change the domain field
of a cache line remain in program order. Only the store register with tag update and

update tag instructions effect the domain field in a cache line. Both of these

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

97

instructions flow through the store reservation station queue in the data unit. This
implies in the 110L a load instruction to a cache line must not be allowed to pass a store
register with tag update or update tag instruction to the same cache line. However,
cache lines never straddle page boundaries in the 88110 or 110L. Therefore the
constraint on order of loads with respect to stores on a cache line is a subset of the
constraint on order of loads with respect to stores within a page. Hence the 110L has

no additional constraints to implement in the data unit.

5.1.2.4 Data Cache and Memory Management Unit.

The operation of the data cache and the data memory management unit
(DMMU) are closely related and will be presented together here. An address in the
110L is 32 bits in length. Cache is organized as 128 sets of two cache line entries each
(2-way set associative). Each cache line contains eight 32 bit memory words. In order
to speed up the process, the DMMU translates the virtual address in parallel with set
selection in the data cache. This is accomplished by splitting the address into parts to
work on independently and in parallel as shown in Figure 41. Since memory is
managed in terms of pages, each 4096 bytes in length, the DMMU only needs the 20
most significant bits of the address to translate from a virtual page address to a physical
page address. Bits S through 11 are used to select one of the 128 sets in the data cache
in parallel with the DMMU address translation. The translated address (the physical

31 0
[virtual address]
31 % 12 11 + 54* 0

virtual page address T cache set | byte |

Byte select in cache line
DMMU page'select he line set select

Figure 41 Virtual Address in the 110L

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

98

page address) is then used to determine if one of the entries of the selected set contains
the target memory. The design of the cache is utilizing part of the virtual address to
index the cache while physical addresses are used as tags. This is a common trick
known as a virtually indexed and physically tagged cache structure [52].

The data cache operation, following set selection, is demonstrated in Figure 42.
In the first step following set selection the address tag fields of both cache lines are
compared in parallel to the translated address from the DMMU. During this same time
period the domain fields are compared to the tag register values to determine if the
access is allowed. In the next step control logic must determine if there was an address
tag match and determine from which line. This step would also include the domain
compare result from the same cache line. In the final step the control logic must use
the remaining 5 bits of the original virtual address, along with the various control
information, to multiplex the data to or from the correct location within the cache line.
During this step any tag update operation must also be performed.

The LOTA domain check in the cache operates in parallel to functions already
necessary. The result should be a cache which operates at the same speed. In the 110L
the ragging enable bit will be implemented in the DMMU cache control register,
shown in the supervisor programming model as cr4l. This register has several
undefined and reserved bits. The state of the tagging enable bit is distributed to all parts
of the 110L which require knowledge of optional tagging features. This bit is set for

address tag 0 eight data words

physical % ' l
page
address
da _
byte address k
yte a # data mux J

Figure 42 Cache Operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

the process by the operating system on task switch.

5.1.2.5 Bus Interface Unit. The bus interface unit arbitrates between requests from
the data cache and the instruction cache for access to the external bus. The external data
bus is 64 bits while the address bus is 32 bits. Normal transfers between cache and
memory is an entire cache line. Instruction cache transfers are unchanged when
compared to the 88110. Since the data cache is organized as eight 32 bit words the
88110 requires four consecutive transfers on the external 64 bit bus to transfer the
entire cache line. For a read the 88110 sends the address of the word in memory it
needs and the memory responds with the four data words for the corresponding cache
line. The 110L complicates this process by requiring an additional transfer of the tags.
The read cache line process is demonstrated in Figure 43. In the figure the critical word
indicates which word was requested by the program. In this case the critical word is in
cache line n and is located at n+2. The 88110 transfers the critical word first followed
by the next three memory locations counted with a modulus four counter. The 110L
transfers the tag in a separate cycle and is first. In this manner the domain check can

be performed before the critical word is forwarded to the processor. In this

processor

Atag

n+2

n+3
n+4=n
n+5=n+1

main memory

Il I o2 T3 I fag critical word = n+2

Figure 43 External Data Transfer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

100

implementation one extra cycle is added to the access of the critical word. Since the
processor may be waiting for the critical word in a computation this may resuit in
additional stall cycles for the processor. This should be minor as the 88110 has many

features to allow continued processing in the face of data dependencies.

5.1.3 Cost Analysis

The costs of implementing the 110L as compared to the 88110 can be

enumerated along the lines of information flow through the processor.

1. Instruction Unit - The instruction unit is enhanced only slightly. It must understand
tag registers and signal when domain crossing instructions are executed. The actual
domain crossing instructions are variations of normal subroutine calling instructions

where the difference is limited to signalling the domain change.

2. Tag Registers - Three 32 bit tag registers have been added. Added logic must rotate

these registers when a domain change is signaled.

3. Data Unit - The data unit has the load buffer entries expanded by 32 bits and the
store reservation station queue entries expanded by 64 bits. This represents the addition
of ten 32 bit words of storage capacity to the data unit. The queue operates without
added complexity but the pipeline to the data cache must be aware of the added

information flow.

4. Data Cache - The data cache entries are expanded by one 32 bit domain field. The
data cache already adds three state bits and one 20 bit address tag to each cache line of
eight words, for a total of 279 bits of storage. The 110L requires 311 bits per cache line
representing 11.5 percent overhead in cache storage. In addition there are two 27 bit
comparators added for domain comparisons along with the additional logic to update
the domain field. The data path between the data unit and data cache has been
expanded, for store operations, by 64 bits. However, a clever implementation would

realize the two 32 bit values are needed at separate times and could possibly multiplex

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

101

the data over a single 32 bit path without effecting the cycle time.

5. Bus Interface Unit - The bus interface unit has additional logic to optionally
perform four or five data transfers per cache line transfer. This will probably require 32
bits of additional temporary storage but only a small amount of logic since it does not
need to interpret the tag bits.

5.2 Experiments

§.2.1 The Simulator - XSim

XSim is the Motorola instruction level simulator for the 88110 processor [S3].
It attempts to simulate as accurately as possible the operation and timing of the
processor. XSim is very useful to estimate performance of real programs on the 88110
in the absence of hardware [54]. XSim operates as a command interpreter and accepts
basic commands to load a program, display memory or registers, map program
memory, and to log siatistics to a file.

XSim provides visibility of the 88110 at clock cycle resolution. The internal
states which are visible include:
- cache - includes data, state and tag
- clock - current clock cycle since program start
- history buffer - the complete state of the history buffer
- map - the current memory map
+ program memory
- registers - general, extended, and control
- target instruction cache - branch address, target address, two target instructions

In addition to the state of the processor, XSim also maintains some profile
information on the program and statistics of processor operation. When profiling is on
the simulator attempts to determine, from the symbol table information, what basic
program block is executing and assign clock cycles to that symbol. A display of the

profile information will display the address, symbol, number of times the first

Reproduced with permission of the .copyrightowner. Further reproduction prohibited without permissionyz\w\w.manaraa.con

102

instruction is executed (an attempt to determine the number of branches into a basic
block), and the number of clocks in which the program counter was within a basic
block.
Processor statistics are divided into the categories:
-+ Clock cycles
- Instructions issued
- Instructions issued per clock
- Issue stall distribution - 12 conditions which can stail instruction issue
- Instruction distribution - instruction distribution to the execution units
« Load/Store statistics
+ Control flow statistics - branching statistics
-+ System calls - counts of operating system calls
These statistics provide valuable information for chip design verification and com-

piler optimization.

Cache Effects. XSim models the cache completely and statistics are gathered for hit
rates. Although the cache is simulated correctly, the simulated environment does not
take into account operating system calls or effects of operating system timesharing. In
effect the cache is private to the program and does not compete with the operating

system. This will tend to give hit rates higher than would be expected in real systems.

Operating System Calls. XSim provides for a limited number of operating system
calls. These calls are performed by software traps which, in a real system, would take
the processor into the operating system to perform the operation. These traps are
detected by XSim and optionally emulated. When emulation is enabled, XSim halts the
simulation and then performs the system call to the native operating system in which
XSim is running. The results are assembled such that, when the simulation resumes,
the operating system call appears to take zero time. The simulator model is limited to

correct timing for user mode instructions only. The operating system calls supported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

103

are:
- brk - change the data segment space allocation
- close - file close

+ exit - program and process exit

+ ioctl - input/output control

- open - file open

- read - file read

- time - get system time

- times - process times

- write - file write

- stat - file status

- xstat - SVR4 file status

- fstat - file status

- fxstat - SVR4 file status

- Iseek - position offset for file read/write

- sysconf - system configuration

110L Simulation. XSim cannot simulate the LOTA enhancements to the 88110.
Altering XSim to simulate the 110L would require a LOTA enhanced compiler to be
useful, an unnecessary and complicated addition to these experiments. Instead the
simulator is enhanced to report additional information about the machine and the
executing program. The program under test is also modified. Together these
modifications allow the performance of the 110L to be projected. The performance
penalties can be extracted and categorized.

For the programs tested to operate properly, the following system call support
was added to XSim:
- getpid - get process ID

- fentl - file control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

104

« access - determine accessibility of a file

- creat - create a new file or rewrite an existing one
- unlink - remove links to files and directories

- lIstat - file status

The statistics gathering of XSim was enhanced to include these categories:
- stack register updates

- stack bytes allocated

- stack allocated in terms of cache lines

- stack bytes deallocated

- stack deallocated in terms of cache lines

- maximum stack depth in bytes

- maximum stack depth in cache lines

- number of calls to malloc

- bytes allocated by malloc

- heap allocated by malloc in cache lines

- number of calls to free

- number of subroutine calls

- number of return from subroutine jumps

« number of leaf nodes - routines which do not make additional subroutine calls

§.2.2 Measurements

The 110L will pay performance penalties in three ways: added instruction
processing to manage tags, added instructions to manage domains, and added time to
transfer cache lines between memory and cache. The added tag management is needed
to cross protection domains, free stack space, and to claim and free heap space.

To estimate these penalties several C++ programs are compiled and simulated.
The simulation environment has severe constraints as to what type of program may be

simulated. First, all system calls must be trapped and emulated with direct calls to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

105

operating system where the simulation is taking place. Second, programs must be
statically linked. Statically linked programs have all function pointers resolved so any
library function needed is included with the program. Ordinarily, programs are started
on Unix systems with the exec system call which loads the program and starts its
environment. Dynamically linked programs require exec to cooperate with the
dynamic linker to set the memory map up for the program. XSim performs the function
of exec in the simulated environment and must act as the master of the memory space.
XSim cannot handle any situation where the memory map of a program must be altered
dynamically for proper operation. This does not include heap space memory
allocation. The slow simulation speed, about 10,000 instructions per second, make

many programs impractical for simulation.

Simulation Parameters. XSim has a few parameters which need to be set. Unix
system call emulation is turned on as well as profiling and statistics gathering. Data and
instruction caches are turned on. The standard input and standard output are set to use
a file when needed and input files are initialized before simulation. Command line
arguments are set for programs which require them. Each program tested is given a
memory space for use as stack and register r31, the stack pointer, is initialized to the
bottom of this space. All of these parameters are set for each program and remain the

same for all simulation runs for that program.

Memory Simulation. When a cache miss occurs XSim simulates the time to fill the
cache from memory. XSim has two values for simulating the number of clock cycles
to transfer a cache line. The first value is the number of wait cycles to access the critical
word (first word) of the transfer. The second value is the number of wait cycles for all
additional words of the transfer. Since there are four transfers for a cache line, setting
XSim to (3,1) cycles would indicate three cycles for the critical word and one cycle for
each of the next three words of the cache line. This is referred to as a 3-1-1-1 burst

transfer. The 88110 based MVMEI197 [55] computer board advertises a 3-1-1-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

106

sustained transfer rate so this value is used for the standard 88110 simulations.

The 110L must transfer the tag field in addition to the words of a cache line. The
burst transfer is extended to five word transfers with 3-1-1-1-1 burst rate. Since XSim
is unaware of tags a 4-1-1-1 transfer will be used to emulate it. The first transfer in the
110L is the tag followed by the critical word. Since the critical word is delayed by one
extra cycle while the tag is transferred ahead of it, the four cycle delay will cause the
same effect in the simulated performance. The 88110 forwards the critical word to
where it is needed without waiting until the cache line has completely filled. The 110L
therefore has no choice but to transfer the tag first so that it can perform the domain

check for LOTA before the data is used.

§.2.2.1 Experimental Runs and Definitions. It is clear that XSim must be run with
two different operational settings. In the first a 3-1-1-1 cache burst transfer is used to
determine the application base performance characteristics. In the second a 4-1-1-1
cache burst transfer is used to emulate the penalty for transferring the tag bits prior to
the critical word. XSim has been modified to determine the number of subroutine calls
and leaf subroutines encountered. It also determines the amount of stack space used.
However, XSim cannot reliably determine the amount of heap space allocated without
help from the software. C++ software can allocate heap space through the traditional
library routine malloc, or it may use the C++ new function. The memory allocation
function may also be implemented as part of the program. For XSim to correctly
determine the amount of memory allocated each program was examined and made
certain that only one memory allocation function is utilized. To facilitate this procedure

new implementations of memory allocations functions were developed.

new. [n C++ the function new is used to allocate memory and assure it is initialized.
The compiler or library may implement new in any fashion it chooses but the language
allows for the user to override the default behavior by supplying its own

implementation. Each program was instrumented with the new implementation shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

107

in Figure 44. The function delete is a companion to new and allows for orderly

void* operator new(size_t s)

{
return(malloc(s)):;
}
void operator delete(void* prt)
{
free(prt);
}

Figure 44 Operator new and delete

destruction of objects. In C++ terminology these definitions overload the global
operator new and delete. In the implementation these routines are linked into the
program before the C++ library to assure they are called instead of the default
implementations. These routines are extremely simple implementations which have

only one goal, to assure that malloc is used in the implementation of new.

malloc. The system supplied malloc and associated routines are also implemented
with special versions for application in this research. malloc is the memory allocation
routine and it operates by using the sbrk operating system call to expand the memory
space of a program. This expanded space is then used by malloc to allocate dynamic
space to the program. This space is referred to as program heap. There are several
implementations of memory allocation routines available. Each have their own
philosophy behind their implementation and all claim to be more efficient than the
others. In reality each operates best under certain circumstances and all have cases
where they perform poorly. A few of these versions were tried for use in this research.
However, they tended to be highly optimized and very sensitive to modifications. The
design decisions for an implementation here are quit different and made building a

memory allocation function from scratch most practical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\wyw.manaraa.com

108

The main difference in the requirements for implementing malloc is that
memory should be allocated in terms of cache lines and be aligned on cache line
boundaries. This would be required of any implementation of LOTA. In fact, all
memory allocation routines must deal with alignment and the value used for alignment
is not very significant. Alignment in this case is performed as shown in Figure 45
where nbytes represents the request in bytes. Most of the remaining implementation

#define ALIGN 32

if(nbytes & (ALIGN-1))
nbytes += ALIGN - nbytes % ALIGN;

Figure 45 Alignment in malloc

details are not of much interest. malloc requests one megabyte at a time from sbrk for
heap space to satisfy small requests and uses sbrk directly for large requests. One
additional cache line is allocated to record the size of the request to assist in statistics
gathering.

There is one detail which is of interest, tag overhead is optionally emulated.
LOTA requires tags to be initialized for each cache line allocated and again when these
lines are returned to the heap. Figure 46 shows the code used to emulate tag
initialization. ptmp is the pointer malloc returns to the calling function and nbytes

#ifdef TAGS

for(i=0; i<nbytes; i+=ALIGN) *(ptmp+i) = 0;
#endif

Figure 46 Emulation of tag initialization

contains the requested number of bytes. Emulation of tag overhead is accomplished by
writing one location within each line of the allocated buffer. This exactly matches the
LOTA requirement that one update tag instruction be used to change the tag value of

each line allocated. It also emulates exactly the effect on the cache for accessing each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

109

line allocated. This effect could range from beneficial pre-loading of small allocations
to cache busting (flushing useful data) worse case behavior. The #ifdef TAGS statement
allows this emulation to be optionally compiled into malloc and requires two

compilations and hence multiple experimental runs.

free. The function free is the companion to malloc and returns space no longer needed
back to the heap. free is called with just one parameter, the pointer to the buffer to
return. The implementation of free discovers how large the buffer is by extracting the
nbytes value stored in the extra cache line malloc allocated and initialized. free also
contains the identical optional emulation of tag initialization overhead as malloc. The
deallocation policy of free is to simply throw the buffer away. If a program has
extremely large memory allocation needs this policy of ignoring deallocation of
memory will cause a failure. Otherwise it is most efficient.

The functions realloc and calloc are also implemented to satisfy program link
requirements. realloc simply frees one buffer and allocates a new one in its place. A
copy of the data from the old buffer to the new one is also required. calloc is the same
as malloc but clears all the memory. Both of these functions were implemented using

malloc.

Experimental Runs. Each program is linked with the two versions of new and malloc
as defined above. In addition, C++ has the ability to implement a procedure in-line
without making a subroutine call. Each program is compiled an additional time to turn
off in-line expansion of routines. This is necessary to discover the number of protection

domain crossings. The experimental runs can now be enumerated.
1. normal run

2. normal run with tag transfers

3. in-line expansion disabled with tag transfers

4. heap emulation of tag initialization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

110

These enumeration values will be used as subscripts to identify experimental data.

Definitions. XSim reports many statistics and a large amount of profiling information.
Much of this information is used to analyze results. Only several of these values are
needed to quantify performance penalties for LOTA. These values are given definitions
to assist in the following discussions.

+ C - clock cycles for the execution of the program

+ D - number of protection domain crossings

+ F - heap space deallocated in cache lines

* J - number of subroutine calls

+ L - leaf nodes, subroutines which do not call other subroutines

+ M - heap space allocated in cache lines

+ S - stack space allocated in cache lines

When used with subscripts these variables imply which experimental run they repre-

sent. For example, C, indicates the clock cycles to execute a program in experimen-

tal run one.The symbol A will be used to denote the difference function. For example,

A(C,,C,) indicates the additional clock cycles experiment two required compared to

experiment one for a program. This may be extended to additional variables.

5.2.2.2 Domain Crossing. To calculate the penalty to cross domains it will be
necessary to estimate the penalty of a single domain cross and apply it to the
information extracted with XSim. A subroutine can be divided into three parts, namely
the preamble, body, and postscript. LOTA requires that the preamble of routines which
make additional calls store the old domain value in the stack. The postscript of such
routines must reverse the procedure. Saving the domain register requires one register-
to-register transfer and one register-to-memory store. Restoring the tag register
requires one memory-to-register load and one register-to-register operation. The
preamble and postscript are performed once. The body of the routine must transfer a

new domain value into a tag register for each new domain it calls.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

111

Figure 47 represents code which would need be added to each routine which

makes calls to other routines in different protection domains. The pseudo code on the

function() { function() {
<preamble>
<preamble> lder r8,t2

st r8,r31,56

ster t0,r2,r2
<body> <body>

1d r8,r31,56
stcr r8,t2
<postscript> <postscript>

Figure 47 Representative Domain Crossing Overhead

left side represents the subroutine divided into its parts. The right side indicates the
added instructions required for LOTA in the 110L. The preamble is expanded to
transfer the old domain in t2 into a general register and then save it to the stack. The
postscript recovers it from the stack and replaces it back into t2. The body is expanded
by transferring the C++ implicit variable zhis to tO to represent the domain to be called.
A program was written to take measurements in XSim to estimate the penalties
involved in crossing a domain. For this purpose the object shown in Figure 48 was
designed. This code is only a fragment of code used in a program. The compiler was
used to generate assembly language for the fun!/ function and this assembly code was
expanded to include representative instructions required in the 110L. In this object b is
a pointer to an object of type Square and represents the new domain to be called.
The assembly language implementation of fun/ returned by the compiler is
shown in Figure 49. In this code sequence the lines in bold have be added to emulate

the LOTA required domain management of tags. When executed on XSim with and

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapnw.manaraa.com

112

class Atype {
int i;
Square *b;

public:

Atype::Atype();
int funl(int);

}:

int Atype::funl(int i) {
int ¢ = b->square(i);
return c/2;

}
Figure 48 Example class to determine domain penalty
spreamble
subu r31,r31,64
st rl,r31,60
or r8,rl,rl
st r8,r31,56
;body
or r7,r0,r2
or r6,r0,r3
1d r4,r7,4
or r2,r0,r4
or r3,c0,x6
or r8,r3,r3
bsr _square__ 6SquareFi ;domain cross
or r5,r0,r2
extu r2,rS5,0<1>
bb0 31,r5,€L9
subu r2,r0,r5
extu r2,r2,0<1>
subu r2,r0,r2
;postscript
14 r8,r31,56
or r8,r8,r8

1d rl,r31,60
addu r31,r31,64
jmp rl
Figure 49 Assembly sequence for domain crossing

without the tag code sequences it was determined three additional clock cycles were

required. This was true if the code was executed once or over many loops. On close

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

113

inspection, the added assembly language statements are simple register-to-register
operations, or to memory very likely to be cached. They are also independent and
easily scheduled for execution by the processor.

An immediate upper bound to the expected penalty for 110L can be calculated
under the pessimistic assumption that every subroutine call requires the full domain
change penalty. This value is 3 e J. There are two reasons why this value is
pessimistic. The first is that not every subroutine call requires a domain change. Intra-
object calls, for example, do not require a domain change. With the available data from
XSim there is no method to determine which calls require domain changes and which
do not. The second reason this is a pessimistic calculation is that routines which call
several other routines only pay the preamble and postscript penalties once. Only the
body penalty needs to be paid on every domain change. From XSim the number of
subroutine calls is known and the number of leaf routines is known. The problem is to
calculate how many preamble and postscript penalties this represents.

Figure 50 represents a call graph, a tree which contains a node for each
subroutine and an edge for each subroutine call.The solid nodes are leaf nodes, nodes

which make no subroutine calls themselves. The information provided for this graph

Figure 50 Call Graph

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

114

by XSim is the number of leaf nodes and the number of edges. All nodes which are not
leaf nodes are called internal nodes. Notice, it is the internal nodes which are the only
routines which must pay the penalty for saving and restoring domain values across
calls. In Figure S0 the symbol o represents the number of preamble penalties which
must be paid. For each preamble there is a corresponding postscript penalty denoted .
It is easy to see from the graph that the total number of nodes is the sum of the
edges plus one. The number of nodes can be represented by the number of internal
nodes plus the number of leaf nodes. Use A to denote the total number of internal
nodes which in turn also represents the total number of preamble and the total number
of postscript penalties. Equation 3 is the result.
A+L =J+1 (EQ3)
A=J+1-L (EQ 4)
The one in Equation 4 represents the root node of the graph. In a program it is
not necessary to save the calling domain value in the root node. Even if it is saved by
convention, the effect is small and will be dropped here. The total penalty a program
is expected to incur due to domain crossings needs one more piece of information
before it can be stated. It has been experimentally measured that a routine will expect
to pay three cycles for the preamble penalty, the postscript penalty, and making a single
call. It will be assumed that the penalty is equally distributed. This implies one cycle
for each preamble, each postscript, and each call. Although this is an estimate, it is
noted that the call penalty in the body of a routine is a simple register-to-register copy.
Assigning it an equal part of the penalty is probably a worse case scenario. In addition,
it is this penalty which is paid on every call. The preamble and postscript penalties are
paid only once. The resulting total penalty, T, can now be stated in words as the sum
of preamble penalties, postscript penalties, and domain call penalties.
T=UJ-LYy+(J-L)Y+J (EQS)
T=3J-2L (EQ6)

In terms of information flow the number of instructions which are required in a

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

115

program is two for every preamble, two for every postscript, and one for each domain.
With the same estimation that every subroutine call is a domain change, then the added
information flow of instructions can be represented by Equation 7.
instructions = 2(J—-L)e2+J (EQ7)
instructions = 5J —4L (EQS)
The information flow in terms of data is shown in Equation 9.

data = 2J -2L (EQY9)

§.2.2.3 Stack Management. Stack management has simple rules. Space must be
claimed as its used and may be claimed for another object. The compiler is assumed
sophisticated enough to make claiming space free in terms of performance since it can
use the store with update instruction to store a value it needs to store anyhow while
claiming the space at the same time. During free operations the compiler must
schedule additional update tag instructions to return the stack to a free state. XSim has
been modified to report the amount of stack space returned in terms of cache lines. For
each of these cache lines an update tag instruction must set the tag to globally
accessible. It will be estimated that one clock cycle is needed for each of these
instructions. This estimation will be nearly correct as stack normally holds recent data
and is most likely to be cached. The cache penalty is therefore simply stated as S, the
number of cache lines of stack set free. In terms of information flow there will be §

added instructions and S additional data transfers.

5.2.2.4 Heap Management. Heap management is very much like stack
management. However, heap space memory must have its tags initialized when
allocated and deallocated. XSim has been modified to keep track of the number of
bytes and lines the malloc function has given to the program under simulation.
However, the malloc function has been implemented in a way to emulate tag
initialization. Therefore the estimated performance penalty will be calculated from the

measurements as shown in Equation 10.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

116

H = A(C,C)) (EQ 10)

In terms of information flow, estimating that all lines allocated are also

deallocated, there will be 2M additional instructions. Since all these instructions also
cause a data memory cycle there will also be 2M data transfers.

5.2.2.5 In-line Functions. Some routines are not called in the traditional sense.
Instead of a subroutine call and return, the function is expanded in-line. These
functions still represent domain crossings. [n the spirit of a subroutine without a call-
return pair as with in-line expansion, the 110L will allow the compiler to directly
change the current domain by writing the current domain register tl. In effect the
penalty could be calculated by expanding the equations derived for domain crossing
above. Given T was used to denote the domain crossing penalty, the added penaity for
crossing domains due to in-line expansion can be estimated as A(T3, Tz) .

Cfront allows programs to be compiled without in-line expansion. When this
option is chosen the compiler guarantees functions will not be expanded in-line.
Experimental run three collects data on all programs compiled with in-line expansion
turned off.

5.2.3 Software Tested

All programs tested are C++ programs and are compiled using the Cfront C++
translator. Each program was compiled in two fashions. The first was a normal
compile. The second was with in-line expansion turned off. These two versions of the
program were linked with the experimental implementation of new and malloc. A third
program version was created by linking with a version of malloc which emulates the
overhead of initializing tags. Therefore three versions of each program exist. Each
program will use a suffix of N to denote normal compilation, / to denote in-line

expansion turned off, and C to denote the cache line tag emulation version of malloc.

Bill of Materials. The Motorola Computer Group uses a C++ software set to generate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\asyw.manaraa.con

117

and check the bill of materials for software products [56, 57]. The set includes three
programs, listbom for listing the bill of materials, genbom for generating a list of
materials, and chkbom for checking a previously generated bill of materials. The input
to chkbom and genbom programs is a directory structure containing the files to be
included in a software product, chkbom also uses as input the file name of the
previously generated bill of materials. The output of genbom is the file containing the

bill of materials, formatted for release to the factory.

groff. The GNU text formatting package groff contains six programs to format text
into a postscript file. This software was discussed previously in Section 2.3.3.3 on page

21 for the research into software defects.

Class Library for High Energy Physics. The Class Library for High Energy Physics
(CLHEDP) is, as its name implies, a class library for applications in high energy physics
[58]. Three test programs supplied with the distribution are used for this research.
These include the MatrixD and MatrixF tests, and the Random test. The MatrixD and
MatrixF test utilize some list classes provided in the library and test several different
matrix operations. The major differences between MatrixD and MatrixF are the class
definitions in terms of standard precision floating point and double precision floating
point as well as the corresponding different library support. Random tests the random
class support and utilizes a few different distribution algorithms. Several tests are

performed on these distributions.

hsim. hsim is a simulator for the flexible modeling of a memory management unit [59].
It takes as input a configuration for the translation lookaside buffer to be modeled
including the number of sets and the number of elements in the set. The simulator then
takes an address trace and determines the effectiveness of the translation lookaside

buffer and gathers other statistics relating to the utilization of the buffer entries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

118

mpsdemo. mpsdemo is a demonstration program for the OSE library [60]. The basic
component of OSE is the OTCLIB, a library of generic components including support
for error handling, error message logging, error recovery, program debugging, and
event driven systems. mpsdemo uses features of this library to implement a simulation

of a mobile phone system.

280sim. z80sim is a program to simulate the Z80 microprocessor [61, 62]. The
software package was actually an entire TRS 80 computer simulator. However, the Z80
portion was removed for use in this research. The simulator was tested by writing a Z80
assembly language program to exercise all of the instructions in the instruction set at
least once. This code was assembled into machine code and fed to the simulator as a
file, much like code in a read only memory (ROM) for starting a computer from power

on.

photon. FeynDiagram is a library of C++ routines which allow a user to draw high
quality postscript Feynman diagrams by writing a C++ program to describe the
diagram [63]. photon is an example of use of the FeynDiagram library. photon does not

need input and generates a postscript file as output.

§.2.4 Example Session

Each XSim simulation was performed with the Unix command
time XSim <cmd > typescript. The time function reports the time each simulation
requires to execute. The cmd file contains the basic XSim commands to simulate the
execution of a given program. The cmd file is shown in Figure S1 for z80sim
experiment two. The file contains the commands to set the cache file wait cycles, load
a program, and log statistics. The Exec command executes another file of XSim
commands. The contents of this file are shown in Figure 52. This file contains the stack
setup commands and enables the floating point unit in the 88110. It turns on Unix

system call emulation, enables the caches, and sets the command line arguments the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

119

Set Wait 4 1

Load /home/88k/bin/trash80m
Exec xsim.prep

Modify Profile On

Run

Log Session On profile
Display Profile

Log Session Off

Log Session On tstat.sim
Display Statistics

Log Session Off

Quit

Figure 51 XSim Command File
Map efff0000,efffffff

Modify Register General r3l
eff£££F0

Modify Register Control crl
0

Set Unix On

Set Caches Real
Set Stderr error
Set Args trash80
Set Pager Off

Figure 52 XSim Preparation File
program under test would ordinarily expect.
The output of XSim is divided into the profiling information and the statistics.

Some example statistics is shown in Figure 53. Scripts were developed to convert these

statistics files into tab separated text files suitable for importing into a spreadsheet.

5.3 Resulits and Analysis

§.3.1 Tag Transfers

Experimental run one tests each program under normal compile and simulation
parameters to establish a baseline of performance. Experimental run two is identical

with the exception that the simulator is set to extend the burst cache fill time to emulate

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

120

Instructions issued: &168680934
Instructions issued per clock (average): 1.009218

Instruction Distribution:

Integer unit 1 instructions: &60896769 (36.1%)
Integer unit 2 instructions: &7040142 (4.2%)
Load instructions: &45227784 (26.8%)
Store instructions: &25616181 (15.2%)

Subroutine calls:

Number of jsr/bsr: &6833472
Number of return from subroutines: &6833468
Number of number of leaf nodes: &4805653

Figure 53 Excerpt of XSim Statistics
tag transfers. The overhead for this burden can be stated as in Equation 11.
(C,-C))

C, x 100 (EQ 11)

percent overhead =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

121

Figure 54 shows the results from the experimental data. The figure demonstrates how

5.00%
4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

Percent Overhead

O £ T = u [T - [~
EEEEESE2E5 485 % E2E S
£ £ £ EEEEs2 g3

o o e b4 &
552" =g & 2% 8
2
z €
Program

Figure 54 Tag Transfer Overhead

sensitive a high performance RISC processor is to external bus access. The overhead
for a single extra cycle for access to the critical word of a cache line ranges from near
zero to 4.9 percent. The cache effectiveness has a direct bearing on performance with
respect to external bus speed. The more cache misses the processor must deal with the
more often its progress will stall. Figures 55 and 56 show the effective cache miss rate
for the programs. The same programs which have high miss rates also have greater
sensitivity to bus performance. The two effects are not completely correlated. During
the experimental research it was observed that a slower bus caused a slight improve-
ment in performance in rare instances. The 88110 is aggressive in its attempt to con-
tinue making progress through out-of-order instruction completion and branch
prediction. It sometimes makes mistakes which it must recover from by backing up.
This makes the performance effects due to one parameter change difficult to predict.
The tag transfer performance penalty estimate here is higher than it should be
due to the fact that the penalty is assigned for both data and instruction cache misses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

122

4.50%
4.00% T
3.50% T
£ 3.00% -
& 2.50% + B [cache miss
“ 2.00% T 8 Dcache miss
T 1.50% T
1.00% -
0.50% -+
0.00%
£ & = R o=
o o ~—
Program

Figure 55 Cache Miss Ratios

8.00%
7.00% +
o 6.00% 1
= 5.00% + ,
s s oom | [®icache miss |
w | @ Dcache miss |
% 3.00% + ‘
2.00% +
1.00% I L
0.00% - - - . .
R 5 % E & £ s
z 2 = = 3 =] 2
o]] "0 1] a
= x = f:-‘ N
Program

Figure 56 Cache Miss Ratio Continued

Only the data cache needs to carry the burden of an extra cycle to transfer tags. This

will remain an area where the penalty estimate can be improved to favor better

performance.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

123

5.3.2 Domain Crossing

The penalty for crossing domains is paid by each internal node of the call graph.
The penalty estimate was given in Equation 6 to be 3J — 2L. Figure 57 shows the
domain penalty derived from experimental data. In all cases the penalty falls below

7.00%

6.00%

£ 5.00%

-

& 4.00%

% 3.00%

E

32'00%

1.00%

0.00% . ¢ : :
EEEEEE=E 8RR E%ERE S
2 428 7 &£ 5 5 8B & £ 8§ g 2
5 &2 = s @ % c;;%“

Program

Figure 57 Domain Crossing

seven percent. This indicates LOTA holds promise with respect to domain crossing
penalties. This is a very important part of the claims for LOTA and motivates
continuing the research. Again, this estimate of the penalty is high. It assumes every
subroutine call requires a protection domain change. An example where a protection
domain change is not necessary is an intra-object call.

Consider the inherent added information flow for these domain changes.
Equation 8 presented the additional instructions as 5/ — 5L and Equation 9 presented
the added data flow as 2J - 2L . Figures 58 and 59 show these values derived from the
experimental data. Each added instruction requires the processor to send an address for

the instruction and receive back the instruction in the von Neumann tube between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

124

12.00%

10.00%
¥ 8.00%
™ ® instructions |
z. 6.00% # data i
< 4.00%

2.00%

0.00%

— -
2 5 3 & v 5
[*] o —
Program
Figure 58 Information Flow

»
2 _
T [} instructionsi
v 8 data i
‘ =
-]
<

o w e c

8 § ¥ £ & £ s

j p:] : £ 3 (=] 2

o q] 0 @ a

5 @ £ g N
Program

Figure §9 Information Flow Continued

processor and memory. The same is true for data. The difference in added flow between
programs can be attributed to the program structure. The ratio of internal nodes to leaf
nodes in the call graph will have a large effect on added information flow. Stated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

125

another way, an increase in the number of times domain information must be saved and

restored across calls causes a corresponding increase in required information flow.

53.3 Stack Space

A very closely related area to domain crossing is stack space management. Stack
space is claimed as it is needed. When it is no longer needed the tags must be set to
indicate the corresponding memory is available for reuse. The stack space operations
are performed in direct proportion to the domain crossing. The performance of
managing stack tags will be critical. The estimated penalty for managing tags in the
stack is one update tag instruction for each cache line set free. Figure 60 shows the

results obtained from the experimental data. For the majority of cases the overhead is

12.00%

10.00% +

E&OO%-

€ 6.00% 1

>

e 4.00% +

2.00% A

0.00% - -
EEE_E&‘:S"C‘“OE“—,§°.§‘=
IS SR AR A S EEEESEEE:
= & 8 8 Y o% § % " @ 5
o o = zmz g.n

Program

Figure 60 Stack Space Tag Management

less than six percent. The organization of the program may have a large effect on this
overhead. Large structures or objects created on the stack will require much more
overhead if these items are frequently constructed and destructed. This is not true if
they are created on the stack of the root node and remain allocated until the program

terminates. Any space the root node of a program claims will remain claimed for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

126

life of the program.
The added information flow through the von Neumann tube is the number of
lines deallocated in the stack space. The number is the same for added instructions as

well as added data. Figures 61 and 62 demonstrate the extra flow.

30.00%
25.00%
% 20.00%
v i e |
& instructoins |
E‘S'OO% 8 data !
o 10.00%
5.00%
0.00%

S § ¥ £ & £ s

£ B £ 2 § g =2

£ @ 2 g % =

Program

Figure 62 Stack Space Added Information Flow Continued

W instructoins !
data 1

Overhead

£ E € £ & & BT ¢ w
— D3

8 & & = a § € © &
2 a o] L hed
= c = P-4 -~ 5
= @ . "

[=] o -—

Program

Figure 61 Stack Space Added Information Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

127

53.4 Heap Space
LOTA added the extra requirement that data needs to be tagged with ownership

at the time it is assigned to an object. In the heap space data must be allocated in terms
of cache lines and tagged when allocated and have the tags cleared when deallocated.
XSim provides the information necessary to determine the number of cache lines
allocated. The programs have also been instrumented with a special version of memory
allocation functions. Experimental run four uses programs linked with memory
allocation routines which emulate the penalty of setting tag values for heap space. The
estimated performance penalty was given in Equation 10as H = A(C +C>) . Figure 63

presents the results obtained from experimental data. In all cases the overhead to set

1.80%
1.60% 1
1.40%
1.20%
1.00%
0.80%
0.60%
0.40%
0.20%
0.00%
-0.20%

Heap Overhead

Figure 63 Heap Space Tag Management

and clear tags is very small. In fact, in one case initializing the tags pre-loaded the
cache and caused performance to actually increase. Caution must be exercised
interpreting this information. It appears that tag management is not a problem for heap
memory. LOTA can be expected to have relative good performance when the size of
heap space allocations is small. Small allocations would have small tag overhead

which would be hidden in the normal processing requirements. If each allocation was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

128

large the tag overhead would become more apparent in two ways. First, the added
instructions would naturally require more cycles of processor time. Second, as the
allocation became large compared to total data cache available, the initialization of
tags would tend to flush the cache requiring it to be refilled as necessary. To analyze
why experimental data indicated a low overhead for heap space tag management the

average memory allocation size is presented in Figure 64. As the figure shows, for the

250.0

Ave. Lines Allocated
- — N
o W o
o o o
o o o

o ¢ ¢
o
ll—) Ls L4

50.0 1
AN A i : :

0O £ 7T & u o T8 [~ (=3
EEEEES2S5 8% 5% EEE S
4 4 8 ‘v L o T WL v g ©
<z & = o ""c\..o :..,-Cvo_‘:
s 0 B on M ®© 0 n O a
O O - zmz g.N

Program

Figure 64 Average Heap Allocation

programs tested the heap space allocated per request is small in most cases. To
understand the memory requirements of these programs it is helpful to compare the
average allocation per request to the total number of bytes allocated. The total bytes
allocated for each program during a simulation is shown in Figure 65. In general the
heap space demand for this example program set is fairly small. This may not hold true
for every program.

The added information flow due to the tag initialization is simply the sum of the
cache lines allocated and deallocated. For this purpose it is assumed every line

allocated is also deallocated. A single instruction is required for each line. All of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

129

3500000
3000000
2500000
& 2000000 +
& 1500000
1000000 +

500000 - l

0 - e S
5§ &2 w 2 a3 g.:?. a
Program

Figure 65 Total Heap Space Allocation

instructions are executed by the data unit and therefore represent a one-to-one
correspondence in additional information flow due to instructions and data. This extra

information flow is depicted in Figures 66 and 67.

12.00%
10.00%
8.00%

g M instructions

6.00% ;l data

4.00%

information Flow

2.00%

0.00%
E E & 2 § IZT € 24
6 & ¢& E a § =« c £
L F=1 L @ | . o
2 8 : @ s
G o = ¥
Program

Figure 66 Heap Space Added Information Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

130

12.00%
;10.00%
. 8.00%
K- & instructions
§ 6.00% W data l
= 4.00%
]
o=
£ 2.00%
0.00%

* 5§ % £ £ E s

i 2 & £ < o 2

1] ol L) w0 Qo [=%

= o z g' N

Program

Figure 67 Heap Space Added Information Flow Continued

5.3.5 In-line Domain Crossing

One of the more difficult areas to deal with is that of in-line expansion of simple
routines in C++. [nstead of making a normal subroutine call and return, these functions
are placed directly in-line. The in-line function expansion allows C++ to reclaim some
of the performance penalty when compared to C programs while still maintaining the
object-oriented program structure. LOTA can allow in-line expansion of domain
crossing as well. To estimate the penaity for crossing domains in-line there must be a
way to count them. The Cfront compiler has a compile time option to guarantee all
routines are not in-lined. The extra subroutine calls and leaf nodes reported by XSim
record the added domain changes. The domain crossing performance penalty derived
from experimental data is shown in Figure 68. It is immediately obvious from the
figure that the overhead in the z80sim program is out of line compared to the other
programs. The other programs seem to be reasonable values which cause no serious
performance concerns. Note, this experiment only made the extra domain crossings
observable, the penalty estimate is based on the normal compilation with in-line

expansion enabled. Consider the performance of the programs with in-line function

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

131

30.00%
25.00% +
R 20.00% +
¢
§15.00%--
S 10.00% +
5.00% +
0.00% " amaeen. .. r 7 : ?
E EEELSEEAQELYECES
£ 8 £ v b Le':v'i‘,_ga‘o""é
= & u 8 T oE & % " o 5
o o0 = zmz g.u
Program

Figure 68 In-line Domain Crossing

turned off but no other penalty as shown in Figure 69. z80sim is obviously very

140.00%
w 120.00%
['3
£ 100.00%
£ 80.00%
3 60.00%
§4o.00%
» 20.00%
0.00% -~ L., . B
—_ e
EEEERE=5 4825 rEL2ES
a4 2 4 e 2 s L B L L 8 45 0
£ 88 R 5% § 5“3 8 4
O O 5~ zmz g.N
Program

Figure 69 In-line Expansion Suppressed
different from the other programs with respect to its use of in-line expansion.

Before z80sim is inspected closer consider the estimated information flow added

for in-line expansion turned off. Figures 70 and 71 show these estimates. Once again

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

132

3.50%
g3.00%
& 2.50%
e
8 2.00% W instructions |
-
EI.SO% & data E
e
‘21.00%
= 0.50%
0.00%
Lo—4 ‘o

£ 5 £ 8§82 % ¢

£ &8 & & v &

o o -

Program

Figure 70 In-line Domain Added Information Flow

45.00%
» 40.00% +
2 35.00% +
': 30.00% +
8 25.00% T ® instructions |
® 20.00% + ® data :
g 15.00% +
% 10.00% 1
= 5.00% +
0.00% -
T § % E B £ S
s 2 & < o o 2
© o o w o a
z [+°4 Z g- N
Program

Figure 71 In-line Domain Added Information Flow

it is obvious that something is remarkably different in the z80sim program.
On closer examination of the source code the problem becomes obvious. The
programmer defined most of the code in the header files and were intentionally

designed to ensure the compiler would expand them in-line. To make this more clear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

133

consider the class method definition from z80sim shown in Figure 72. This function is
defined in the header file which defines the class z80_cpu. The inline keyword tells the
compiler the programmer intends this function to be expanded in-line. Both ldi_mc and
intr_check are also methods of class z80_cpu and are likewise declared with the inline
keyword. The result of the program design is that all three functions are implemented
in-line by the compiler. When in-line expansion is turned off the result is three
additional subroutine calls. One of these will be an internal node requiring a domain
save and restore. The other two, in this case, are leaf nodes. However, these leaf nodes
are within the same object. Intra-object calls do not require a domain change. Hence
there would be no need for the new internal node to save the domain. In this one case
a single call to /di in an object of class type z80_cpu would result in one internal node
and two leaf node penalties being recorded when in fact they are unnecessary. This
shows that our estimation of in-line domain changes is pessimistic.

Beyond the unnecessary domain change penalties, there is another important
point to make about in-line expansion. Often times domain changes are not required at
all and the compiler should recognize these cases easily. Another example, repeated
often in the source code, will be taken from the z80sim program. Consider the code in
Figure 73. The class method definition is declared inline to the compiler just as seen
above. In this case the method takes a single argument, increments it by one, and
returns the result. There is no object data involved. There is no need for the compiler
to implement a domain change. The experimental data collected has no means to detect

these types of routines. They are assigned penalty estimates the same as any other. This

inline void
z80_cpus:1di()
{
1di_me();
intr_check():;
}

Figure 72 In-line Example Code

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

134

inline z80_16bit
280_alul6::inc(280_l16bit v)
{

}

return(++v);

Figure 73 In-line Method Without Object Data

make the estimates very high compared to what is necessary.

Much of the performance penalty for domain changes due to in-line expansion
can be argued away as not really necessary. A good argument could also be made that
programmers should not design or code software to count on compiler behavior to
language special features. The inline keyword is only a hint to the compiler, the
compiler could implement the function in-line or not in-line as it pleases. In terms of
the von Neumann bottleneck being exposed to the programmer, the inline keyword
could be seen as a very bad idea. On the other hand, these arguments miss an important
point. It is hard to predict what the programmer will do. For any cache design there is
an algorithm that will make it perform at its worse. This could be why the capability-
based machines were never successful. In the average case their performance was
good, but many small protection domains could cause them to perform badly. LOTA
still performs reasonably well, but the potential problem of in-line domain changes

was not foreseen.

§.3.6 Summary

Now that the individual penalties have been estimated, the remaining task is to
add them up and see if the overall performance is acceptable. Figures 74 and 75 display
this composite. The figures present the data a little different than previous figures. The
100 percent mark is the total time for the LOTA version of the program to complete.
The solid black portion of the bars represents the percent of that time which the
original program required to complete. All programs have expected performance
penalties of less than 40 percent. Most are in the 10 to 15 percent range. Several have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

135

five percent or less.

LOTA represents a new design trade-off between hardware, software, and error
containment. Its performance has been demonstrated to have the potential to be much
better than the software defect detection tools even in their absolute best case. The
implementation of LOTA begins with a familiar base design and adds to it in several
ways, but the complexity of these additions are far less than the ground up approach in
the hardware object-based systems. The object-based systems define new and complex
operations that cause implementation difficulties and result in lower performance.
LOTA has been carefully designed into the cache architecture in such a way as to
parallel its operations with functions already required. The result should be a processor

with equal cycle times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

136

100%
80%

60%
3 inline

|
Heap :
@ Stack |
B Domain |
O Tags :
B Baseline |

40%

20%

troff

Figure 74 110L Performance Summary

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

137

100%

80%

60%

(@ Inline f
Heap :
Stack |

40% |
8 Domain i
l

O Tags

@ Baseline

20%

0%

grops
MatrixD
Random
MatrixF
hsim
mpsdemo
z80sim
photon

-20%

Figure 75 110L Performance Summary Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

Chapter 6
Refinement

6.1 Tightening the Bounds

The inherent penalties for LOTA include managing tags in heap space and stack
space. The implementation penalties are the tag transfer between memory and cache
as well as saving and restoring domain information across calls. The estimates
presented so far have some overestimations of these penalties. This section will explore
the tag transfer and domain crossing penaities to tighten the bounds on expected

overhead.

6.1.1 Cache

LOTA only requires data accesses to be checked, instruction fetches do not need
to be checked. In the estimates for the penalty of transferring tags the measurement did
not separate instruction cache access and data cache access. The estimates will tend to
be high. To get a feel for the size of the over estimate the instruction access and data
access characteristics for the programs are presented in Figure 76. In all cases
instruction access represents over SO percent of all memory accesses. These numbers
were generated by the XSim statistics for the number of times the instruction cache
was accessed versus the number of times the data cache was accessed. The effects of
tag transfer will vary with the instruction to data access ratio as well as the cache hit
ratio.

Unfortunately, XSim does not distinguish instruction memory from data
memory automatically. XSim does allocate simulation memory for the program under
test based on the sections in the executable file. Each section can have different
memory characteristics. The process of changing the characteristics of a memory

segment is to modify the simulator memory map based on the information created

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

139

100%
80%
E 60% 8 Data
e 40% ® instructions

20%

Figure 76 Instruction to Data Access Comparison

50.00%
45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

Overhead

listbom MatrixD mpsdemo 280sim
Program

Figure 77 Performance Overhead Without Instruction Tags

when the program was loaded. The process does not lend itself to automation as easily
as previous experiments. Some of the programs were simulated manually to extract
their performance characteristics and are shown in Figure 77. The performance

estimates do improve, but not dramatically in most cases. In particular it has not had

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

140
the effect on z80sim as could be hoped.

6.1.2 Domains

The other area where the estimates of overhead could be overstated is in the
domain crossings. This is especially true for in-line domain crossing. To get a better
understanding of how the estimates could be overstated it will be necessary to
understand the programming language better. Consider the C++ class definition shown
in Figure 78. The class is Azype. Once the type has been declared new Afype objects

class Atype {

funl();
public:

fun2();

Figure 78 C++ Class Definition

can be created. Atype is a very simple class definition. It only contains two methods
(class subroutines), funl and fun2. Notice the keyword public in the class definition.
Only functions which are declared after the public keyword are visible to objects of
other types. fun2 is a public method for objects of type Atype. funl is called a private
method of class Afype. Private methods cannot be called directly by other objects.
These methods are only called by other methods of Azvpe. The implication here is that
all calls to private methods must be intra-object calls and would not require a domain
change in LOTA.

Since z80sim represents the worse case for estimates of overhead it will be
analyzed for the cause. XSim records profiling information. The profiling information
assigns clock cycles to symbols of the program as it is being simulated. The symbols
are extracted from the symbol table kept in the program file. Many of the symbols
represent subroutine names. XSim also keeps track of how many times the instruction

exactly at the symbol address is executed. In the case of a subroutine this number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

141

represents the number of times it was called. It is possible to examine the profile
information and determine the number of times a private method was called. Upon
examination of the z80sim source code it was discovered that class z80_cpu had many
private methods. From the profiling information from experimental run three, it was
determined that during simulation these private methods were called a total of
4,854,251 times. All of these could be excluded from the domain crossing numbers.
The class z80_flags resulted in 417,816 calls to private methods. In another case, the
class z80_memory was derived from class MEM_Ref. A public definition of the array
operator [] called a base class method. These calls are also intra-object and do not
require domain changes. These calls accounted for 4,043,340 of the total. In one more
example, a class defined a method which took no arguments and had only one
statement, return /. The in-line expansion of this statement is simply to throw it away.
This method was called 1,155,195 times. Just in these four instances it has already
been determined that 10,470,602 calls were counted as domain changes needlessly.
When a function which was in-line expanded is changed to a subroutine call, the
routine which calls it must now be an internal node on the call graph. Recall that only
internal nodes need to pay the domain save and restore penalty. Unfortunately it is
impossible to determine which new calls are responsible for new internal nodes being
encountered. Consider the case where no needless internal nodes are created. In this
case all the unnecessary domain changes discovered above would cause no needless
domain saves and restores. Even so, the overhead for the z80sim program falls from 48
percent to 40 percent. However, it is likely that some of these domain changes resulted
in internal nodes paying domain save and restore penalties in the estimates. If this is
true then the improved performance of :80sim would be even greater. If all of the
domain changes were assumed to result in needless domain saves and restores the
overhead would drop to 28 percent. So far only a few of the possible private method
and other intra-object calls have been accounted for. There are many more. In the

absolute best case there would be no need to cross domains in-line and the overhead

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

142

would drop to only 18 percent.

The point is, z80sim is a very unusual program making use of a language feature
for in-line function definition in an attempt to write an extremely fast Z80 simulator.
LOTA appears able to handle this worse case scenario with less than 40 percent
overhead. As with all object-based systems any penalty for crossing domains will

become a larger percentage of total execution time as objects become small.

6.2 Improving Performance
Separating the penalties in LOTA once again into inherent and implementation
types, this section will explore one of each and offer some hope for improved

performance.

6.2.1 Tag Transfer

Processor design is advancing rapidly. To improve performance of new
processor designs the bandwidth between processor and memory is increasing. The
two ways to increase bandwidth is to increase external bus access speeds and to
transfer more information in a single bus transfer. Processors are approaching the point
where they have enough pins to transfer entire cache lines in a single memory transfer.
If the external data bus can be enlarged so that tags can be transferred along with the
critical word then the tag transfer penalty would virtually disappear. It may not
completely disappear until the bus can be enlarged enough to transfer all the data and

the tag in a single operation.

6.2.2 Stack Space

One area where LOTA has an inherent penalty is its need to change the tag
values as memory is assigned to different protection domains. The added information
flow required for stack manipulation in LOTA is large. An idea from segmented
systems might help in stack management. The observation is made that permanent data

is ordinarily non-sequential. Blocks of memory are allocated as they are needed and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

143

come from the heap space in no obvious order. On the other hand, temporary data is
sequential and there is nothing random about its assignment from stack. Another
observation is that stack space is allocated in blocks and the only protection necessary
is to protect earlier blocks from the current one. The current block represents the
currently executing subroutine while all the blocks below it represent stack frames for
all the subroutines between the current one and the root node in the call graph. Figure

79 demonstrates this view. In LOTA stack frames for different subroutines are tagged

root [Y

- top of stack

B

A

root

Figure 79 Stack Frame and Call Graph

with object ownership. The design allows for stack space assignment to an object to be
free or nearly so. When the claimed space is returned it must be tagged again, an
operation which in not free. A conceptual problem with this is its chaotic nature. The
penalty is very much related to the size of a stack frame.

In the segmented approach to stack management each stack is marked by a base
and limit field which the processor enforces for the currently executing object. The
proposed idea to improve LOTA is to define a new field, called a stack barrier, which
separates the current objects stack frame from anything below it. The stack barrier
would operate like the base field of a segment register but would have no
corresponding limit field. The stack barrier could therefore be defined to be another

register exactly as the tag registers of LOTA. The limit field is not needed because there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

144

is no stack space above the currently executing object which is claimed. This is the
basic definition of a stack.

In this alternative version of LOTA, a domain change would include telling the
processor of the new barrier between its own space on the stack and the space the new
object might claim. Arguments to the new routine would occupy space above the
barrier. Figure 80 demonstrates this new idea in the case where a method B calls C. As
shown in the figure, as method B is operating it is limited from accessing memory for
stack space below it. As it prepares to call C it places arguments, if necessary, on the
stack. It sets the barrier between itself and the arguments for C during the call.
Following the call, C can claim additional space as it needs. To manage this procedure
the processor would need a new register set defining the new stack barrier on domain
change. It is clear these registers could be operated identically to the tag registers
already defined for LOTA. The previous barrier would then need to be saved and
restored only if the routine is an internal node on the subroutine call graph. The penalty
would be identical to the ones already demonstrated for tag registers.

This alternative implementation for LOTA will be referred to as LOTA+. To

analyze the effects consider the stack penalty caiculated earlier in terms of lines of

current
current = barrier - C
current o AIES barrier
. B B B
barrier
A A A
root root root
Before During After

Figure 80 Stack Management During Domain Change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

145

stack space allocated. The new values are calculated in terms of internal and leaf nodes
exactly as they were calculated for domain changes. The comparison in terms of
estimated performance penalty is shown in Figure 81. Notice how the performance
penalty actually went up in most cases. This demonstrates that the original design of
LOTA performs well when stack space allocated per call is small. Remember however,
that LOTA pays a penalty based on lines of space allocated, a value which differs for
each subroutine. LOTA+ pays a fixed penalty per call depending on if the routine is a
leaf or internal node in the call graph. This value is variable based not on which
subroutine is called, but how many subroutine calls are made. LOTA would tend to be
better if stack frames are small, LOTA + would tend to be better as stack frames were
large. Both improve with fewer calls, but LOTA+ distinguishes the intra-domain calls
and pays less of a penalty. In our estimates the lines of stack is accurate, but the internal
and leaf nodes overstate the domain crossing requirements.

It is interesting to look at LOTA and LOTA+ in terms of information flow as
well. Figure 82 shows the comparison in terms of instructions while Figure 8 shows

the comparison in terms of data. Notice the instruction penalty for LOTA is usually

4.00% -
2.00%
0.00%

12.00%

10.00%
T 8.00% ,
P ELOTA |
F—
E 6.00% lLOTA+f
-}

EEEE-QS-S&‘&OE“-E°E§
6 6 8 = &a * o X 6 X ¢ & &
8 84 &8 % @ s 8 T v € W & w3
e = g A N >~ £ o ©
o Th <~ £ o © -
5824 e igs
e
Program

Figure 81 Stack Penalty Comparison for Domain Crossing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

146

12.00%

10.00%
8.00%

@ [nstructions

6.00% #@ nstructions+

Overhead

4.00%
2.00%

0.00% i .
O € T u T o <
= e
EEEEZE2E 4R EXELES
L 0 0 e A L L 8B L& 2 9 o
X & 9 O +~ Hoe & < ° O £
N T L T o N ™ w B ‘o
S o = T € 3 a N
=
Program

Figure 82 Information Flow Comparison for Instructions

30.00%

25.00%
- 20.00% .
£ 15.00% 8 Data
E : |® Data+
e

10.00%
5.00%

0.00%

pic
eqn
tbl

(3
v
]
£

troff
grops
MatrixD

| Ty
§..>s
2 L
T °
€ 3

chkbom
genbom
listbom
soelim
mpsdemo
Z80sim
photon

Program

Figure 83 Information Flow Comparison for Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

147

smaller while the data penalty is often larger. This demonstrates the trade-off more
clearly for small stack frames, LOTA + uses more instructions with less data traffic. In
LOTA all the instructions require a corresponding data transfer.

6.3 Improving Security Against Defects

The LOTA protection domains are compiler controlled. The value used to define
a domain for the currently running object is stored in a special register. As such it is out
of scope for corruption by ordinary software defects. There is no code in C++ a
programmer could use to directly effect the value in the tag registers. In many cases
the compiler can generate the address directly. In the 88110 a common sequence for

the compiler to generate is:

or.u r3,r0,<immediate 16>
or r3,r3,<immediate 16>

This code uses 16 bit immediate values in the instruction set to generate half of the
target address with each instruction. The or.z instruction generates the upper 16 bits
of the target address while the ordinary or instruction adds the lower 16 bits. This type
of target address calculation is safe from program errors since it is contained entirely
in the instruction memory. However, there are cases when the compiler cannot know
at compile time what the target address will be. In these circumstances a data memory
location is used as a pointer to the object. Since these values are used to define
domains, then a program defect could cause an incorrect domain value to be loaded
into the tag registers. Notice that it will not effect the current object, but the called
object. Also, it is improbable that the value would be a valid domain. If it was a valid
domain it would be even more improvable that the called object would generate an
incorrect address and access the wrong memory. Most likely is that a protection fault
will occur in the target object on its first memory access.

No matter how improbable, it still might be advantageous to close the security
hole. There are two requirements which must be met to have better security. The first

is that object entry points and domain values cannot be altered by a program without

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

148

detection. The second is that the return address and domain value for subroutine calls
also be protected from undetected modification by the program. Together these
mechanisms bind target addresses for domain calls and returns with the protection

domain values.

6.3.1 Domain Entry Points

The entry point and domain value for an object could be kept in an object
function table. A function table is a table with pointers to the functions (subroutines or
methods) for an object. The processor would need instructions which allow these target
pointers to be loaded along with the object tag in an operation which is inseparable.
The 88110 already allows for double words (64 bit words) to be loaded in support of
floating point values. It would be possible to define a new load instruction which
transferred two 32 bit values representing the target address and protection domain in
a single 64 bit load. The hardware would have to maintain the integrity of this pair of
registers to detect any tampering by the program. The register pair could then be used
to define a new enter protection domain instruction.

The jump table would have to be manufactured at the time an object is created.
This would require a privileged memory manager capable of generating domain values
and initializing tag values outside the scope of normal LOTA definitions. This would
require a facility to identify such a memory manager, but it should not be an obstacle.
Of greater concern is the additional overhead involved with manufacturing jump tables
and the indirection involved with domain calls. These would be significant, but perhaps

less costly than the mechanisms in previous object-based systems.

6.3.2 Domain Return

Along with the binding of entry points to domains, there must be mechanisms to
allow saving and restoring domain values. The domain save and restore must have the
additional capability to bind the return address with the domain value. In the 110L the

return address is copied into general register r1 while the return domain value is copied

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

149

into t2. The integrity of these two values would need to be maintained by the hardware.
These values will need to be saved into the stack to make additional calls. A double
word store could be used to store them as a pair. However, the location these values are
stored in must maintain their integrity. This would probably require a separate cache
line tagged with a value to denote a return address and domain pair occupy the space.
A subsequent load operation to restore the value could make integrity checks to assure
the values have not been tampered with. The return from protection domain instruction
would then be assured as a minimum that the target return address is a valid one defined
in a previous call and that the corresponding domain is correct.

This discussion is only intended to provide the outline of how LOTA could be
expanded to incorporate a more secure protection mechanism for object encapsulation.
This does not necessarily mean such an implementation would be space or time

efficient, only that it could be done and it might be worth the effort.

6.4 System Issues

Up to now only process and memory issues have been addressed by the design
and analysis of LOTA. This section will provide a brief overview of the major system
issue, namely disk transfer of data which includes tags. Then a description of

alternative implementations of tags is considered.

6.4.1 Disk Transfer

One of the important concerns in LOTA will be the transfer of memory tags to
and from secondary storage. For this discussion the 110L will be used. The 110L has
cache lines which are 32 bytes in length and are tagged with a 4 byte tag. Most
computer systems utilize a direct memory access (DMA) controller for transferring
data between memory and secondary storage through a disk controller. The DMA and
controller are often integrated. The DMA function must be aware of tagged memory
and have the capability to transfer tags and data. It is operating system software which

provides the controller with instructions to transfer memory. These instructions could

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

150

easily be augmented with tag information. The controller would need to be altered to
have the capability to transfer the tags optionally.

DMA operations occur in multiple of bytes. Some transfer single bytes, some
double bytes, and others full 32 bit words in four byte quantities. Tags are multiples of
any of these size quantities so there is no problem with DMA operations. Disk sectors
are most commonly 256 or 512 byte quantities. This represents a compromise between
efficient transfer and optimized use of space. The operating system also divides
memory up into pieces called pages. For the 88110 these pages are defined by
hardware to be 4096 bytes long and the operating system must use multiples of this
size for its own pages. Therefore it takes eight or 16 disk blocks to save one 88110 page
of memory. In LOTA these 4096 byte pages, for data pages, must have 128 additional
bytes of tag memory. For a balance to occur the operating system could use 8192 byte
pages and 256 byte sectors. This would require 33 disk sectors for every operating
system page when tags are required and 32 disk sectors for pages not requiring tags.
Since all of the quantities are power of two values there should be no alignment

constraints with such an implementation.

6.4.2 Tag Memory

Much of the tag space remains unused. During the operation of a computer with
LOTA the tags would be used sometime and not used at other times. Only the data
pages of a program utilizing the object-based protection would have their
corresponding tags utilized. This gives rise to the possibility of reducing the number
of tag bits in the system. Three methods to this end will be briefly discussed.

6.4.2.1 Partially Filled Tag Space. To reduce the amount of memory required for
tags in the memory system it is possible to simply populate only part of the tag memory
space. Only pages which have their associated tag space occupied by real memory
would be candidate memory for object-based data pages. This would be practical in a
system which is only partially occupied with object-based programs. The operating

Reproduced with permission of the .copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

151

system would need to be aware of which pages were tagged and give bias to their use
in object-based programs. There appear to be no problems in hardware for partiaily
populating the tag space but the operating system complexity would be increased to

manage available memory.

6.4.2.2 Separately Mapped Tag Memory. Another possibility would be the
separate mapping of memory. One mapping of memory would appear to programs and
the compiler exactly as described for LOTA. Another mapping of memory would allow
the operating system to access tag memory just as it would any other memory. The
address range which allows the direct access to tag memory could be mapped out-of-
range to ordinary programs. To the operating systems and the hardware controllers this
second mapping would significantly reduce the complications of handling pages with
tags. The down side to such an approach is that memory decoding is more complex and

the address space available is correspondingly reduced.

6.4.2.3 Reconfigurable Tag Memory. A third possibility would be to use a second
memory mapping unit similar to the memory management unit. This second memory
mapping unit would map program addresses to the tag space while the normal MMU
mapped program addresses to data space. Such a hardware mechanism has been
proposed in [64] and is called the Reconfigurable Tagging Architecture (RTA).

The RTA allows any memory in the system to be optionally used as tags. When
tags are needed the memory is allocated for the tags at the same time that memory is
allocated for data. The RTA requires the processor to have a separate translation unit
and cache for tags. This would be a significant departure from what has been presented
for LOTA up to this point. The advantages of such a system would be maximum
utilization of memory without the complexity of tag space separate from storage space.
Most of the complications of managing processes and memory with tags disappear.
Another benefit to LOTA is that the design decisions for tag support for a process is

separated from the data cache design decisions. The amount of data which is tagged

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

152

could even be put off completely to allow the run time system to pick an optimal value.

Of course there is some complexities involved with the RTA. The processor must
be designed with an entire new unit. This unit must contain cache memory for the
address translation as well as for caching the tags. A whole new set of parameters will
determine the performance of such a system. The RTA does offer the greatest
flexibility in the design of LOTA.

6.5 Application of Tags

The most common software defect which was recorded in Chapter 2 was the
uninitialized memory read error. Spare tag bits in LOTA could be used to help trap this
defect type. Recall that domain values in LOTA are ordinary addresses. These
addresses are 32 bits in length. However, a cache line is 32 bytes in length and therefore
five address bits are unnecessary in LOTA. Tags in the 110L therefore only need be 28
bits since one bit has already been defined for use as a global flag. The remaining four

bits could be used for other purposes. Two possibilities are presented.

6.5.1 Uninitialized Read Tags

With the four bits of available tag space LOTA could be enhanced to detect
uninitialized memory read operations on 64 bit boundaries. This compares with the 8
bit boundaries that Purify can detect, but otherwise is the only system presented which
can detect such errors at all. The four bits would be assigned one each to a pair of data
words in the cache. When allocating memory from heap these bits would be cleared
when the tags are initialized. A memory write operation to any bit in the 64 bit quantity
would set the associated initialized tag bit. Any read from a word which did not have

its initialized tag bit set would be flagged an uninitialized memory read error.

6.5.2 Boundary Condition

A competing idea for the use of the four spare tag bits would be in setting a

boundary condition in the cache line. LOTA requires memory to be allocated in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

153

multiples of cache lines. There will be times when the space allocated is larger than
necessary. Access to this additional space is not an error which is ordinarily caught by
LOTA but which may represent a software defect. The four bits of available tag could
be used in LOTA to set a boundary condition in the associated cache line. With four
bits the granularity could be set to 16 bit boundaries. Any access beyond the boundary
would be flagged as an invalid memory access much in the same way that Purify

detects an array bounds access error.

6.6 Alternative Applications for LOTA

LOTA was designed to be an extension to a processor architecture. Although the
changes required to the base architecture are meant to be feasible, it is still a significant
change. This section will present two possible alternatives for an implementation of

LOTA which may provide more attractive cost versus benefit characteristics.

6.6.1 Second Level Cache

As presented, LOTA limits the memory which an object may access. The stated
goal is to bound defects to object boundaries. To reach this goal the only necessary
feature is to limit the memory write operations an object makes. A memory read
operation outside the scope of an object’s domain does not cause a defect to be
propagated to another object directly. The only defect it can propagate due to a memory
read error is an incorrect result. A memory write error on the other hand can directly
change another object causing it to be defective as well. This observation can lead to a
relaxation for the boundary checks for object access, where only write operations are
limited to object boundaries.

When memory write operations are limited to the memory an object owns, many
of the hard to trace software defects are still trapped. Any array bounds write error, free
memory write error, dangling pointer error, or corrupt pointer error which result in a
write to memory outside the domain will be trapped. No read error will be trapped

unless the read operation is invalid to the entire process. A read of instruction memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

154

is such an example. This relaxation of the requirements leads to other possible
implementations of LOTA which may be more practical to implement.

The cache in a processor must have good performance. It must have a sufficient
hit rate and cycle time to meet performance goals. LOTA was designed to avoid
impacting the cycle time of the cache but it necessarily increases the size of the cache.
The important characteristic of the cache in LOTA is that domain access rights are
checked. These checks occur on read and write operations. If LOTA was changed to
only require writes be checked then the place in which the check occurs could be
pushed off the processor chip into a second level cache. The primary cache is still
assumed to be on the same chip as the processor. All read operations are free to be
performed in this cache. To provide write checks the on chip cache must be managed
with a write-through policy. The write-through policy requires that all write operations
must cause an external bus write to keep the external memory system up-to-date at all
times.

The 88110 processor has a companion part, the 88410, which provides control
for a second level cache. A block diagram for a system with the 88410 is shown in
Figure 84. The 62110 array in the figure is a memory array made up of dual bus 62110
chips to implement the data storage for the cache. The 88110, 88410, and 62110 were
all designed as companion parts for system construction. The 88410 can control a
second level cache from one quarter to a full megabyte in size. The 88110 and 88410
were designed in such a way that the second level cache always contains a strict super
set of data in the 88110’s cache.

The 88410 contains the address tags for cache lines while the 62110 array
contains data only. In a LOTA system the 88410 would be expanded to include the
domain tags as well. The tag register of LOTA could be implemented as normal
memory mapped control registers in the 88410. To update the tag registers the compiler
could use xmem instructions. xmem exchanges memory with a register value. The

importance of xmem in a LOTA implementation is that these instructions are not

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

155

88110 -
88410 " 62110 array
[
Control Address Data

Figure 84 88110 System with 88410 Second Level Cache

ordinarily generated by compiled code and the instruction has the side effect of
serializing the 88110. Serializing the 88110 means that all previous instructions must
complete before the next instruction executes. Although this would be a performance
penalty, it would allow the 88410 to remain synchronized with respect to the domain
of the currently executing object.

In this implementation of LOTA the compiler would generate an xmem
instruction prior to making a subroutine call which needs a domain change. The
serialization effect would cause all previously issued instructions in the old domain to
complete before the new domain is installed. The subroutine called would then have
all its memory accesses checked in the new domain. The write-through policy of the
primary 88110 cache would assure the 88410 had the opportunity to flag any write
access with a domain violation. A read access which missed in the 88110 cache could
optionally be checked for domain access rights as the 88410 supplies the data.

An important characteristic of secondary caches is that they are optional to a
system. Many popular computer systems have second level caches implemented as a

plug-in card that can be installed or removed after the system is shipped. It could be

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

156

possible to design such a card that has the entire implementation of this modified
LOTA. The card would contain the modified 88410 second level cache controller and
62110 data array, but would also contain the memory for tags in the main memory

system. Figure 85 provides a block diagram of such a possible second level cache card.

Address
Control ; l Data
—
88410 62110 array
|
A A A
Control Address Data
=
Control| LOTA tag memory |«
i
YVY Yy v \

88110 Interface Memory Interface

Figure 85§ LOTA Implemented in Second Level Cache

This implementation of LOTA would make the entire tag support subsystem an
optional piece of hardware which could be installed after a system has been shipped.
The cache card would need to be designed so that operating system software can access
the LOTA tag memory as ordinary memory for the purpose of saving and restoring tags
to disk. The benefits versus expense in such a system may make this implementation

of LOTA more attractive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

157

6.6.2 Smart Card Memory Protection

In some emerging new fields there is no history as to which type of memory
management hardware will prove best. The smart card field is such an area. A smart
card in this discussion is a credit card with an integrated circuit embedded in the card
plastic. The smart card is just recently evolving to where entire computing facilities on
a single chip is integrated into the card. The next step will be to provide a small
operating system kernel which allows multiple applications to securely share the card
resources. The question still remains as to what type of memory management hardware
will provide the security facilities required in the smart card environment with the
minimum of implementation resource requirements.

The smart card operating environment is much different than in general purpose
computers. The card is active only when inserted into a card terminal. Commands are
received from the terminal and the card provides a response. The implication to this
model is that only a single software object need to be active at one time on the card and
it operates to completion and terminates. In effect a smart card application consists of
objects on the terminal and objects on the card.

A block diagram of a possible card implementation is provided in Figure 86. The
smart card has three connections to the terminal: data, reset, and clock [65]. There are
three different types of memory in a smart card. Random access memory (RAM)
provides temporary storage. Read only memory (ROM) includes all data and
instructions programmed at the factory. Electrically erasable and programmable read
only memory (EEPROM) is a type of memory which retains its contents without power
yet can be changed by software. Although EEPROM is writable this operation requires
more time and power to accomplish. For this reason data in EEPROM are ordinarily
copied to RAM to be operated on and then returned to EEPROM for permanent
storage. This is only one type of smart card computer organization but will suffice for
this discussion.

The memory management for the smart card could be implemented as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

158

2 ey
clock data
—— -
reset 4
address
emory
ontroller control > RAM #
>
- ROM '
-
FEEPROM

Figure 86 Smart Card Block Diagram

traditional MMU in the CPU or it could be implemented as a special circuit in the
memory controller. The CPU implements supervisor and user privilege states similar
to general purpose processors. The memory management policy needs to assure user
privileged software only accesses memory it has rights to. Supervisor privileged
software has access rights to all memory. Notice the block diagram for the smart card
computer included no cache. It is unlikely that cache will fit into the transistor budget
constraints for smart card applications.

The data flow through the smart card is simple. A message is received by the
smart card operating system. The message specifies an object, a method within the
object, and the arguments to the method. The operating system is responsible for
making sure the protection domain is enforced for this object and passing the
arguments to the correct routine and returning the result. This is an over simplification
of the operation of a smart card. The purpose is to convey that a single object is active
at one time and it completes its operation and returns a result before another object can
be made active. This is a very different model of sharing than a time shared computer
system in the traditional sense.

LOTA could be applied as the general purpose security mechanism for this smart

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

159

card system model. Consider an example where memory is organized as 32 bit words
and each word has an additional four bit tag. All memory would be tagged for security
reasons in a smart card. Four bit tags per 32 bit word represents a 12.5 percent overhead
in storage requirements. Four bits would allow 16 applications to share the smart card
at any time. The limited resources and strict security environment in a smart card
application make more than 16 applications impractical. The tag bits required could be
reduced by increasing the number of words tagged by a single tag value. Four words
per tag would represent just 3.125 percent extra storage.

In the LOTA smart card all user privileged data access would be checked for
protection domain access rights. The operating system would be responsible for
assigning memory to a protection domain by initializing its tags. The overhead
involved with tag initialization by supervisor privileged code would be acceptable
because this operation in a smart card is very rare. Typically memory is allocated to an
application (object) at the time the application itself is loaded into the card. The only
exception is memory in RAM. But since RAM is temporary memory and only one
object is active at a time, RAM can be assigned to the one active object and it need not
be shared or protected. The possible exception is that the operating system may require
some RAM protected from user privileged software.

The description of LOTA for smart cards has been brief. The purpose is to
provide motivation for the practice application of LOTA and provide arguments for its
feasibility. In the smart card environment an application and an object are one in the
same. Domains are managed by the operating system and user privileged software are
restricted to memory access in its own protection domain. The limited sharing and
dynamic memory allocation requirements in the smart card reduce the implementation
requirements for LOTA. The operating system overhead for setting up a protection
domain should be very small. LOTA should provide a practical protection domain

mechanism for smart cards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

Chapter 7

Summary and Conclusions

A recent issue of the Communications of the ACM was devoted to the software
debugging scandal and its introductory article made several good points about the state
of the debugging process [66]. Some of the early statements were “First, computer
programs often don’t work as they should, making software development costly. And
too much buggy software reaches end users, leading to needless expense and
frustration.” These two statements quickly sum up the dark side of the experience for
developers and end users. Computers are getting much faster with better human
interfaces, larger memory systems, and larger disks. It is time to start putting some of
these extra resources to work at improving the debugging process. “Let’s make the
computer take an active role in helping the programmer deal with complexity.” Formal
techniques to program verification are often used to support the notion that debugging
is virtually unnecessary. The argument in [66] disagrees with “Not only is total
elimination of bugs amn unrealistic goal, but software is continually evolving.
Debugging tools are as necessary to the incremental evolution of software as they are

for finding errors.”

7.1 The Software Problem

An original survey of software defects was presented in this research [3]. This
survey used the defect detection tool Purify to instrument several programs. Data on
several common types of software defects were compiled. An analysis of the data was
provided which demonstrates the pervasive problem of software defects reaching the
end user. Data on over 25,000 access errors representing 209 source code statements
were collected. Both C and C++ software was used for this survey and a comparison

of errors between C and C++ was provided.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

161

Eliminating defects before a product reaches the end user is still a necessary
goal, but it is evident that bugs will continue to reach the end user. In this era where
quick time to market determines the success of a product, pressure to get products out
quickly will likely cause more software defects to reach end users. There is evidence
of this phenomena already where minor updates to fix bugs come at an alarmingly
rapid rate. In the world wide web product arena, market demands require new features
faster than bug fixes can be delivered for older products. By the time a product reaches
production release its successor is in advanced customer testing.

An objective observer attempting to determine the strategy used in the market to
eliminate software maintenance might conclude it was to release new products fast
enough to obsolete the old versions before repair becomes necessary. Still, fixing
defects after product release is expensive. Tools such as Purify are helping reduce the
cost of eliminating defects before a product is released. But these tools are too
expensive to be used by end users. The tools for field assistance in detecting and
analyzing defects are still severely lacking. Few tools are aimed at both development
and maintenance in the software life cycle. Most software maintenance requires
symptoms of a defect to be reported back to the developers so that the problem can be

reproduced. The question is, can more symptoms be made observable?

7.2 Logical Object Tagging Architecture

The Logical Object Tagging Architecture (LOTA) was presented as a possible
solution to some of the software defect problems. This new architecture is based on
two novel ideas. The first is that data is tagged with a value which identifies the object
which owns it. The second is that the data cache checks for object ownership on each
data access. The goal of this new architecture is to efficiently support enforcing object
boundaries over the complete software life cycle. Enforcing object boundaries in
hardware will trap many of the important software defect types. Providing the checks

in the data cache provides the necessary efficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

162

LOTA defines features to allow the compiler to manage object-based protection.
Simple to use domain registers allow the compiler to convey to hardware the protection
domain for an object on each call. Rules for managing tags are straight forward and
easy to implement. The use of tag registers to define protection domains places the
values out of scope of ordinary software defects. The result is a reliable and easy to
manage system for the enforcement of object boundaries.

An analysis of LOTA was provided by using the 88110 processor as a base
design. The features of LOTA were mapped onto the 88110 in a way which fits well
with the original design. All changes to the 88110 were designed to be feasible. The
modified 88110 was analyzed by using XSim, the 88110 cycle accurate timing
simulator. XSim was modified to collect information useful to estimate the
performance of a LOTA implementation. The parameters crucial for such estimation
include statistics on tag transfer, stack space allocation, heap space allocation, and
subroutine calls.

An analysis of the data collected from simulation indicates LOTA provides very
good performance in most cases. In-line expansion of object methods in C++ proves
problematic. But even in a particularly bad case, overhead was shown not to exceed 40
percent. The average case over the programs tested was 12 percent with several cases
less than five percent. These estimates are necessarily pessimistic. All subroutine calls
were counted as domain changes and assigned the penalty. Intra-object calls do not
need domain changes and could be eliminated from the estimates. Some subroutines
do not access any private object data and also do not require a domain change. Even in

the worse case LOTA could be argued as worth the expense given the benefits.

7.3 Future Directions

LOTA was designed from the outset as an enhancement to a general purpose
processor. As such, its design was constrained to choices which could ordinarily fit into

the architecture of existing processors. Features which would require special support

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

163

were avoided. Given a clean slate, LOTA could be designed in a way to lend itself to
more efficient implementations. Additional instructions which operate on data and tags
could make tag management more efficient. Additional support for stack operations
which understands tags could also help, especially for domain crossing. LOTA has a
relatively high increase of information flow with respect to data when handling the
stack and making domain changes. This could be cut in half with an instruction to
handle return addresses and return domains as a single value. A tagged stack register
for referencing information on the stack could also greatly improve stack management
efficiency.

The design constraints on LOTA were imposed so that a realistic
implementation could be derived and allow accurate performance estimates from
simulation. Even with these constraints performance is very good. Without these
constraints performance would be better. A restricted version of LOTA was presented
which could be implemented as a second level cache card. The result could be a cost
effective hardware implementation which still provides important software defect
detection capabilities. In new areas for computers which are self contained and very
resource constrained, such as multi-application smart cards, a variation of LOTA could

provide the basis for the entire security system.

7.4 Conclusion

Tagging data with object identifiers is a new way of thinking about enforcing
access rights to data. The data cache is an efficient place to enforce access rights based
on ownership of data. Analysis has provided supporting facts to claim the method has
merit for its application to solving part of the software defect detection problem over
the software life cycle. Future direction possibilities have been given for the
architecture and the analysis provided by this research indicates pursuit of these

possibilities hold much promise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\asyw.manaraa.con

Appendix A
Full Text of Electronic Correspondence

A.1 Henry Baker
From - Wed Apr 23 09:11:32 1997

Newsgroups: comp.arch

From: hbaker@netcom.com (Henry Baker)

Subject: Re: Naive Java question: Array index checking
Content-Type: text/plain; charset=ISO-8859-1
Message-ID: <hbaker-1804970757590001@10.0.2.1>

In article <zalmanES8t8sD.In@netcom.com>, zalman@netcom.com (Zalman
Stern) wrote:

> Yes, [was being silly. But if this is as extreme as Henry makes it out to

> be, a system without the checking offered in 16-bit segmented environments
> would be such a step backwards that noone would use it. [’'m driving home

> the point that the priorities are otherwise.

I’m having a hard time equating ‘essential to do array bounds checking’ with
‘advocating 16-bit segmented address spaces’. I think that 16-bit segmented
address spaces are silly, and they only appealed to IBM because IBM was
afraid that the PC would take away some of their business from below. IBM
was right, and underestimated the cleverness of the PC programmers who
managed to get the brain-damaged 8086 architecture to do something useful
anyway. But one should not mistake this cleverness as a vote _for_ the

8086 architecture. The _only_ thing that programmers admired about the

8086 architecture was its price relative to its competitors at the time.

164

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

165

As has been pointed out already, array bounds checking has 2 parts — getting
the information about the array bounds themselves, and then performing the
array bounds check.

The array bounds must be stored somewhere, and if the array bounds check is
to be performed quickly, this means some sort of a high-speed register.

So this requires holding onto a register —- often throughout a loop. So

one cost of array bounds checking is some slight additional integer

register pressure. Note that languages allowing arbitrary _lower_ array
bounds double this cost. Since array bounds in most sane languages remain
constant (at least for large periods of time), the management of these

constants can be readily performed by a modemrn compiler.

The other cost of array bounds checking is the actual comparisons. For
the simplest linear algebra expressions (A[ij]l=Al[i,j]+B[i]), these comparisons
can be moved out of the loop, which then allows the bounds themselves to be

moved out of registers, if necessary.

However, in the case of things like hash tables, where you have expressions

like foo[<expression> MOD n}, you must either have an extraordinary compiler
that knows that (a MOD b)<Ibl, or you have to insert a check. (The fact that
languages like C and Fortran still allow expressions like

(a MOD b) to return negative numbers for positive b has irked

me for 25 years, even though this actually _reduces_ performance due to

the following array bounds check. And yes, nearly every single software
person has tripped over this particular bug in his programming life - usually

during ‘system integration’, when the costs are highest.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

166

For arrays used as other kinds of tables — e.g., in graphics — wherein
you do a float calculation, and then convert to an integer and then index
to an array, it is hopeless to expect a compiler to _prove_ that the

array bound can not be violated.

If the actual array bounds check can be done completely in parallel with
other calculations, then it may cost nothing. However, a serious question
arises about what sort of interrupt to cause if the bounds don’t check.

One would still like to find out where in the code the program went wrong,
and which array was about to be violated. If such an exception wants to
be ‘precise’, I can imagine that this precision may exact additional costs,

but this depends critically on the architecture.

A.2 David Chase

From: David Chase <“mylastname “@ world dot std . com>
Subject: Re: Naive Java question: Array index checking
Date: Mon, 21 Apr 1997 02:28:49 GMT

Reply-To: mylastname, @, world, dot, std, ., com
Content-Transfer-Encoding: 7bit

Content-Type: text/plain; charset=us-ascii

Andy Glew wrote:

>

> Will somebody please write a C language to C language preprocessor

> that adds bounds checks to all array references

> Now just run all of the SPEC benchmarks through this preprocessor.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

167

> Compile them with your favorite compiler.

My favorite compiler doesn’t handle any of the languages seen in the
SPEC benchmarks, but it does automatically insert bounds checks for

array references. Perhaps you meant, “favorite C compiler” :-).

> And then publish the “safe” versus “unsafe” benchmark times.

Ugh. I would rather you did not phrase it like that. The reason

is that there are languages designed to have a “safe” implementation,

and they run much more quickly than C-made-safe. This is not because
of differences in the optimization algorithms, but because the design

of the language (and the corresponding changes to calling conventions
and data layouts) allows much more efficient implementation of checking.
Bad results for “safe C” might be misinterpreted (might hell, they would,
by those people who were so inclined to interpret them that way in the
first place) to mean that safe languages in general are slow. This

need not be the case.

Furthermore, there is some semantic information available in these

languages that is not available in C or C++. If I see something like

for (i =0; i < a.length; i++) {
... afi] ...

}

you have what a friend of mine has called a “road kill bounds check”.

There’s versions of this for Eiffel, Modula-3, and Ada, but not for

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyzwnw.manaraa.cot

168

C. There are cases in C where a static array bound is supplied,

but such code is relatively rare (because it is so inflexible, unlike

Java arrays or Modula-3 open arrays) and you often still have to trust

the cast to that type (not always, but sometimes). I worked on a
C/C++-checking-product in a former job, and implementing the standard

set of checks for C/C++, that come at very low cost in Modula-3 (a compiled
language that I also work in from time to time), is very, very costly,
especially in an environment where not all code is subject to those

checks and binary compatibility with “unsafe” code (other people’s

libraries) is required. A 10x slowdown was our wildest-dreams design

goal when we set out to build it.

There are other problems, too -- differences in the type system can
affect the cost of performing some of the run-time-type checks, or it

can affect the number of places where the type must be checked.

> If nothing else this would encourage compilers to eliminate unnecessary

> bounds checks...

Maybe, but it’s a really hard way to do it. I’d rather spend my time

optimizing Java bytecodes.

David Chase

A.3 Zalman Stern

Newsgroups: comp.arch
From: zalman@netcom.com (Zalman Stern)

Subject: Re: Naive Java question: Array index checking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.col

169

Date: Wed, 23 Apr 1997 00:37:08 GMT

Andy Glew (glew@cs.wisc.edu) wrote:

: Will somebody please write a C language to C language preprocessor
: that adds bounds checks to all array references, and which, if they

: fail, simply branches to a

: fprintf(stderr,

: “Array bounds check number %d failed\n”,

: check_number);

s exit(1);

: code fragment.

: Now just run all of the SPEC benchmarks through this preprocessor.

: Compile them with your favorite compiler.

: And then publish the “safe” versus “unsafe” benchmark times.

: If nothing else this would encourage compilers to eliminate unnecessary

: bounds checks...

Hmmmmm... I suspect a Devil’s Advocate position here...

Surely Andy is familiar with the Safe-C work covered in:
http://www.cs.wisc.eduw/~austin/talk.scc/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

170

(For those who do not get the “surely,” this work was done by Todd Austin
and Scott Breach under the guidance of Gurindar Sohi. I believe Dr. Austin
has since gone to work for Andy’s recent alma mater in the wilds of the
Pacific Northwest. Dr. Sohi’s research group is mentioned on Andy’s home
page. But hey, I've forgotten about plenty of code [’ve written, much less

stuff that was done in my near midst...)

The above URL will get you to a paper which describes how to detect *all*
spatial and temporal memory access errors in almost any C

program. (Programs which depend on casting between integers and pointers
will need to be adorned slightly however.) Its way cool and [’m pretty sure

I’ve posted about it in comp.arch before...

The research was done using a source to source (C to C++7?) preprocessor for
C. I don’t think anything has been done with SafeC since as it was a class
project in a graduate level compilers course and the authors did/are doing
something else for their theses. (So the conspiracy against array bounds

checking runs so deep that one can’t even get a thesis out of it anymore

:-))

Before we start talking about adding hardware support for a feature
involving runtime internals, we must very carefully design at least one, if
not many, implementations of the runtime. For example, the
Austin/Breach/Sohi work as presented in the paper above would not use an
instruction that took three registers and signaled an exception if a value

in “the middle” register was not within the bounds of the two “outer”

registers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

171

Using a relatively naive preprocessor approach, SafeC is 2.3x to 6.4x

slower (130% to 540% overhead) than the unadorned C code on a series of six
benchmarks. Programs are typically less than twice as large with checks.
(More detailed data is given in the paper, including breakdowns of where

the time and space goes.) The checking provide is significantly more

extensive than what most people mean when they say “array bounds checking.”
They also give some lower bounds on how well an optimizer that elides

unnecessary checks can do.

Certainly if I were in “the hardware community” [would not believe the
first software person who said “The world will end in a flurry of lawsuits
if you support free array bounds checking.” But if I did I would start by
asking questions like “What do you mean by free?” “What exactly must be
checked?” And on down the line.

How would a hardware designer feel about adding lots of hardware support
for fast array bounds checking to have something like a better version of

SafeC make it all moot?

-Z-

A.4 David Chase

Newsgroups: comp.arch

From: hbaker@netcom.com (Henry Baker)

Subject: Re: Naive Java question: Array index checking
Date: Wed, 23 Apr 1997 17:08:08 GMT

In article <ygezpuqvxaz.fsf@algor.doc.ic.ac.uk>, jsc@doc.ic.ac.uk (Stephen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

172

Crane) wrote:

> [see bounds-checking as a debugging utility: programmer writes

> code and tests it. During testing it breaks due to memory corruption.

> Programmer turns on bounds-checking, recompiles and hey presto, finds
> the bug and fixes it. Iterate. Program working, programmer

> recompiles with bounds-checking disabled.

[hope that this a HW and not a SW person suggesting this.

Unfortunately, for any sufficiently large and complex program, the ‘testing’
phase is _never_ done. This is the result of our inability to solve the

halting problem.

Since one can never be sure that all bugs have been vanquished, you now
have to decide what to do about the bugs that remain. The head-in-the-sand
‘what, me worry?’ attitude seems to be the preference of many software
organizations. They turn off all checking, and pray that

any failures will be so violent that the program will crash completely

rather than leaving subtle corruptions in the database.

The more enlightened organizations admit, up-front, that potential bugs
remain, and provide for detecting them before they can corrupt important
data, and supply enough information in the form of error messages so that
the bug can be killed at the source. More enlightened customers will be
grateful for this, since they have been protected from the worst

consequences of bugs that do show themselves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

173

Since the existence of bugs can also enable significant security violations
in today’s networks, the lack of such checks could eventually open up the

software vendor to legal problems.

A.S Henry Baker

Newsgroups: comp.arch
From: hbaker@netcom.com (Henry Baker)

Subject: Re: Naive Java question: Array index checking

In article <ygezpuqvxaz.fsf@algor.doc.ic.ac.uk>, jsc@doc.ic.ac.uk (Stephen

Crane) wrote:

> [see bounds-checking as a debugging utility: programmer writes

> code and tests it. During testing it breaks due to memory corruption.

> Programmer turns on bounds-checking, recompiles and hey presto, finds
> the bug and fixes it. Iterate. Program working, programmer

> recompiles with bounds-checking disabled.

I hope that this a HW and not a SW person suggesting this.

Unfortunately, for any sufficiently large and complex program, the 'testing'
phase is _never_ done. This is the result of our inability to solve the

halting problem.

Since one can never be sure that all bugs have been vanquished, you now
have to decide what to do about the bugs that remain. The head-in-the-sand
'what, me worry?' attitude seems to be the preference of many software

organizations. They turn off all checking, and pray that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

174

any failures will be so violent that the program will crash completely

rather than leaving subtle corruptions in the database.

The more enlightened organizations admit, up-front, that potential bugs
remain, and provide for detecting them before they can corrupt important
data, and supply enough information in the form of error messages so that
the bug can be killed at the source. More enlightened customers will be
grateful for this, since they have been protected from the worst

consequences of bugs that do show themselves.
Since the existence of bugs can also enable significant security violations

in today's networks, the lack of such checks could eventually open up the

software vendor to legal problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

175

Appendix B

Additional Data for Purify Experiments

Section B.1 describes additional errors reported by Purify. Section B.2 presents
the complete list of programs tested. Section B.3 presents the raw data of access errors

discovered for this research.

B.1 Additional Errors
Only five types of errors were presented in the body of this work. Purify actually

reports seven types of errors. The two additional types are given in the following two

paragraphs.

Freeing unallocated memory error (fum). Memory was being freed which was
already in the heap. Usually this indicates a redundant free operation to a previously

freed memory block.

Freeing non-heap error (fnh). Memory which was never part of the heap was being
freed. This is a serious programming error usually indicative of a trashed memory

block pointer.
These two errors are not necessarily access errors but more memory use errors.

Both are errors in freeing memory.

B.2 Programs
Table 2 lists the thirty one programs and indicates which package each belongs

to as well as the programming language used in each.

Program Package Language
GateToGate MCC CCS-2.5 C++
Table 2: Programs Tested

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

176

Program Package Language
XCellCompact MCCCCSs-2.5 C++
XCellPlacer MCCCCS-2.5 C++
XCellRouter MCCCCs-25 C++
placement MCCCCs-2.5 C
router MCCCCSs-25 C
zcat GNU gzip-1.24 C
tar GNU tar-1.11.2 C
make GNU make-3.70 C
sed GNU sed-2.03 C
gawk GNU gawk-2.154 C
gee GNU gee-2.5.8 C
ccl GNU gce-2.58 C
ccp GNU gcc-2.58 C
geqn GNU groff-1.01 C++
gpic GNU groff-1.01 C++
grodvi GNU groff-1.01 C+
groff GNU groff-1.01 C++
gsoelim GNU groff-1.01 CH++
gtbl GNU groff-1.01 C++
gtroff GNU groff-1.01 C++
doc InverViews-3.1 Beta C++
ibuild InverViews-3.1 Beta Ci++
idraw InverViews-3.1 Beta C++
iclass InverViews-3.1 Beta C++
ghostscript GNU ghostscript-2.61

temacs GNU emacs-18.59 Cc
Idl++ MCC Camot-2 C++
amd BSD amdS5.3-betal C

Table 2: Programs Tested (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

177

Program Package Language
pplc parprosys CIC++
sendmail BSD sendmail-8.6.4 C

Table 2: Programs Tested (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

178
B.3 DATA

B.3.1 Dynamic data

program umr abr abw fmr fmw fnh fum
GateToGate 2 0 0 ¢] 0 0 0
XCellCompact o 0 0 0 1] o 0
XCellPlacer 0 4 0 61 0 1 0
XCellRouter 0 0 0 0 0 0 0
placement 107 0 0 3 0] 0
router 298 4552 5t 116 0 0 0
zcat 0 0 0 0 0 0 0
tar 0 0 o 0] 0 0
make 1207 0 0 0] 0 0 0
sed (4] 0 0 0 0 o 0
gawk 6 0 0 0] 0 0 0
gee 0 0 0 0 0 0 0
ccl 1781 0 0 0] 0 0 0
ccp 4806 0 0 0 0 0 Q
geqn 0 0 0 0 0 0 0
gpic 0 0 0 0 0 0 0
grodvi 1 0 0 0 0 0 0
groff 0 0 0 0 0 0 0
gsoelim 0 0 0 o] (0] 0
gtbl 0 0 0 0 0 0 0
gtroff 2108 0 0 0 o 0 0
doc 2 0 0 0 0 0 0
ibuild 2832 o 0 63 5 0] 5
idraw 3 0 0 0 0 (] 0
iclass 3 9 o o 0 o (¥

Table 3: Dynamically reported errors.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapnw.manaraa.com

179

program umr abr abw fmr fmw fnh fum
ghostscript 3571 317 317 0 0 0 0
temacs 0 0 0 (] 0 o 0
Id++ 0 0 0] 2156 397 0 52
amd 20 0 (0] 1 1 0 0
pplc 6 505 2 0 0 0 0
sendmail 2 0 0] 0 0 0 0

Table 3: Dynamically reported errors. (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

180

B.J3.2 Static data

program umr abr abw fmr fmw fnh fum
GateToGate 2 0 0 0 0 0 0
XCellCom- 0 0 0 0 0 0 V]
pact

XCellPlacer] 2 0 2 0 1 0
XCellRouter 0 0 0 0 o 0 0
placement 13 0 1] 2 0 0 0
router It 1 p 17 0 0 0
zcat 0 0 1] 0 0 0 o
tar 0 0 1] 0 0 0 0
make 3 4] 0] 0 0 0 0
sed 0 0 0] 0 0 (] 0
gawk 2 0 o 1] 0 0 0
gee o 0 0 0 0] o] 0
ccl 2] 0 0 0 0 o
ccp i 0 0 0 0 0 0
geqn 0 0 0 0 0 0 0
gpic 0 (] 0 0 o 0 0
grodvi 1 0 0 0 (] 0 4]
groff o 0 o 0] 0 0
gsoelim 0 0 0] 0 o 0 0
gtbi 0 0 o 0 0 0 0
gtroff 2] o] 0 0 0 0
doc 2 0 o 0 0 0 0
ibuild 9 0 o 12 1 0 1
idraw 1 0 1] 0 0 0 0
iclass 1 1 0 0 (4] 0 0
ghostscript 5 1 1 0 0] 0 (]

Table 4: Source code statements generating errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

181

program umr abr abw fmr fmw fnh fum
temacs 0 0 (] 0] 0 0 o
Idl+—+ 0 0 o 38 20 0 1
amd 4 0 0 1 1 0 0
pplc 4 25 8 o 0 0 0
sendmail 1 0 0 (0] 0 0 0

Table 4: Source code statements generating errors. (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Appendix C

XSim Experimental Data

C.1 Experiment One

C.1.1 Experiment One Part One Data

Parameter chkbom genbom listbom soelim pic eqn
Cycles 19475537 | 19680914 548610 5899339 | 23031893 | 38795786
Instructions 23536536 | 23638300 514187 6834912 | 22269392 | 41253134
IPC 1.208518 | 1.201077 | 0.937254 | 1.15858% | 0966894 | 1.063341
Two Inst 6445524 6482275 147716 2242592 6943089 | 12980788
One Inst 10645488 | 10673750 218755 2349728 383214 | 15291558
Zero Inst 2384525 2524889 182139 1307019 7705550 | 10523440
No Inst 2313294 2417598 164940 75677 6381275 | 9352633
Source Unav 8490211 8547341 124209 1633037 6126289 9476997
Destination Unav 16048 12261 3901 3067 210354 83883
Pipe Full 0 0 0 0 0] 0
Reservation Full 5554 10783 4306 3991 150060 939041
DMU B/'W 2148655 2149391 67076 621145 1999253 2654324
Empty D Slot 35125 34482 25563 349725 598703 1329520
Branch-Branch 14044 17435 8963 264695 504182 1912772
History Full 46 91 7 319 8087 581
Serialized 5125 5332 208 4863 7439 60900
Carry bit 0 0 0 0 305 4
Decode Error 0 0 0 0 0 0

1 1 I 1 I 1
Integer 1 10650611 | 10698084 193203 361583 8713230 | 15246840
Integer | % 453 453 376 346 39.1 37

Table 5: Experimental Data One Part One

182

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

183

Parameter chkbom genbom listbom soelim pic eqn
2 2 2 2 2 2

Integer 2 2105318 2104591 14686 273728 896803 1151598
Integer 2 % 89 89 29 4 4 28
Load 6372353 6381816 124601 1514788 4831271 8881216
Load % 27.1 27 242 222 217 215
Store 2155998 2182008 62313 894573 2561612 4952805
Store % 9.2 9.2 12.1 13.1 115 12
Float Add 0 0 0 o 32849 0
Float Add % o 0 0 0] 0.1 o
Float Mul 4622 2776 2475 0 59956 2758
Float Mul % (0] 0 0.5 0 03 4]
Float Div 162 1 0 12 34147 18237
Float Div % 0 0 0] o 0.2 0
Graph Add 0 0 0 0 0 0
Graph Add % 0 0 0 0 0 0
Graph Bit 0 0 0 0 0 0
Graph Bit % (0] 0 0 o 0 0
Cond Branch 2195602 2200518 91876 1246191 3480480 8099126
Cond Branch % 93 93 17.9 182 156 196
Uncond Branch 49205 65047 24930 541595 1655315 2870105
Uncond Branch % 02 03 48 79 74 7
Trap 2663 2667 10t 2440 3727 30447
Trap % 0 0 0 0 0 0.1
Rie 0] 0 0 0 0 0
Rte % o 0 0 0 0 0
Control 2 2 2 2 2 2
Control % 0 0 0 0 0 ¢
Load Latency 268 27 255 268 2.89 2.51

Table 5: Experimental Data One Part One (Continued)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyzwnw.manaraa.cot

184

Parameter chkbom genbom listbom soclim pic eqn
Load Clocks 2.01 20t 1.98 201 221 203
Load hits 0 0 0 0 0 0
Decoupled Loads 1870 3538 1024 1173 33041 27040
Decoupled Stores 1840 2084 33 1393 4226 8555
address alias 219 108 59 171 14803 29973
1d input full 245 2 174 161 5158 2348
1d output full o 0 0 0 0 0
st reservation full 5309 10755 4132 3830 144902 936693
Cond store 43 75 48 0 92075 2163
Inst/Branch 1048 1043 44 38 434 3.76
BTC hits 28888 23228 16414 522032 930043 2873302
BTC misses 10827 20244 9197 3866 324703 524438
Correct Pred 46568 42759 38074 618899 1481167 3921042
Incorrect Pred 25105 24303 15806 96483 746751 1275547
History Depth 0.66 057 0.9 2.68 1.25 L4
Flush History 13646 11273 11356 173754 678884 1117848
Flush Stall 0 0 0 0 0 0
Accesses 14993831 | 15051032 | 347713 4945717 | 15498033 | 27657518
Hits 14971514 | 15013402 | 332678 4941710 | 15027284 | 27213393
Stream Hits 5420 9282 314 1036 136942 109925
Misses 16897 28348 11721 2971 333807 334200
Ratio 99.89 99.81 96.63 99.94 97.85 98.79
Accesses 8525124 | 8561580 183190 2239325 | 7081693 | 13481941
Hits 8513110 | 8541760 181643 2236310 | 6930228 | 13393712
Stream Hits 19 53 12 7 1848 1896
Misses 11995 19767 1535 3008 149617 86333
Copybacks 3018 6421 807 2139 49275 38002
Ratio 99.86 9.77 9.16 99.87 97.89 99.36

Table §: Experimental Data One Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

185

Parameter chkbom genbom listbom soelim pic eqn
Cycles used 251181 416776 115588 58646 4097565 3467495
Conflicts 1280 1563 825 425 48379 22671
Bus Utilization 0.012897 | 0.021177 | 0.210692 | 0.009941 | 0.177908 | 0.089378
Accesses 0 0 0 0 0 0
Misses 0 0 0 0 0 0
Ratio 0 o 0 0 0 0
Accesses 0 0 0 0 0o 0
Misses 0 0 0 (] 0 0
Ratio 0] 0 4] 0 o 0
exit 1 i 1 1 1 1
read 2154 2150 7 30 px 55
write o 6 85 2381 3696 30379
open 84 84 1 5 0 2
close & 85 1 5 0 1
brk 2 2 2 4 2 2
time o] 0 0 0 0 0]
times 0] 0] 0 0 0 0
sysconf o o] 0] 0] 0 0]
ioctl 8 <) 0 7 3 4
Iseek 0] 0 0 0 o 0
fstat 8 83 0 7 2 3
getpid o 0 0 0 0 0
fentd 4 4 4 0 0 0
access o 0 0 o 0 0
creat 0] 1 0 0 0 0
unlink 0 0 0 0 0] 0
stat 0 0 0 (] 0 0
Istat 168 168 0 0 0 0

Table 5: Experimental Data One Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

186

Parameter chkbom genbom listbom soelim pic eqn
Updates 19289 29497 11633 181889 732805 837389
Bytes Allocated 1016128 1214384 483616 7260032 | 26941520 | 57495456
Lines Allocated 33272 41729 16380 270579 947796 1952873
Bytes Deallocated 1016080 1214336 483568 7259984 | 26941472 | 57495408
Lines Deallocated 33270 41727 16378 270577 947794 1952871
Max Depth 3776 3952 224 2112 2912 2160
Max Lines 121 126 73 68 96 70
Mallocs 439 603 187 393 4857 6834
Bytes Malloc 355494 378215 9859 33482 251743 150742
Lines Malloc 11312 12025 382 1293 10400 85%
Frees 255 589 2 331 4863 6840
Jsr/Bst 24691 31970 13790 95596 595321 1081526
Jmprl 18537 27531 7586 94575 529347 644995
Leaf Nodes 11054 17583 3445 87786 329555 449941

Table 5: Experimental Data One Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\www.manaraa.cormn

187

C.1.2 Experiment One Part Two Data

Parameter tbl troff grops MatrixD Random MatrixF
Cycles 16005741 | 306050485 | 55478409 | 11700482 | 97089967 | 11686619
Instructions 16836344 | 243693938 | 52607713 | 6465443 | 72045628 | 6471169
IPC 1.05189%4 0.796254 0948256 | 0.552579 0.74205 0.553725
Two Inst 5265708 72753084 | 16184410 | 1955556 | 21455024 1908477
One Inst 6304928 98IST7I0 | 20238893 | 2554331 | 29135580 | 2654215
Zero Inst 4435105 135109631 | 19055106 | 7190595 | 46499363 | 7123927
No Inst 4088414 101322557 | 13312481 1679592 8899440 1725214
Source Unav 3x374 80383265 | 17818462 | 7296798 | 44927328 | 7306131
Destipation Unav 63040 4483951 386514 37210 6427815 40696
Pipe Full 1] 0 0 0 0 0
Reservation Full 191559 4370135 429739 90837 350i91 87665
DMU B/W 1128462 26801094 4521276 358059 6474022 357875
Empty D Slot 652782 7368020 1231201 183967 899181 183169
Branch-Branch 641573 8137097 1427477 54701 655443 31345
History Full 1194 27684 533 902 0 234
Serialized 16132 67683 56152 15535 3100194 18004
Carry bit 2240 4480 1 0 0 0
Decode Error 0 4] 0 0 0 0

1 1 1 1 1 1
Integer 1 6113384 86666260 19559504 | 2644251 | 20512684 | 2667583
Integer 1 % 36.3 356 37.2 409 285 41.2

2 2 2 2 2 2
Integer 2 677137 7118782 1403668 195198 3878681 176698
Integer 2 % 4 29 27 3 54 2.7
Load 3460349 60490350 12711447 722113 14079364 7153%4
Load % 206 248 24.2 112 19.5 11.1
Store 2201527 30098096 6119773 358988 6273375 355868

Table 6: Experimental Data One Part Two

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

188

Parameter tbl troff grops MatrixD Random MatrixF
Store % 13.1 124 11.6 5.6 87 55
Float Add 0 95739 4 207713 11801319 214407
Float Add % 0 0 0 32 164 33
Float Mul 4706 486537 19355 796831 5317973 79374
Float Mul % 0 02 0 123 74 123
Float Div 1246 751367 139028 274603 570988 274317
Float Div % 0 03 03 42 08 42
Graph Add 0 0 0 0 0 o
Graph Add % 0 0 0 0 0 0
Graph Bit 0 0 0 0] 0 0
Graph Bit % 0 o 0 0 0 0
Cond Branch 3012805 36685263 8969154 1018370 5314223 1017416
Cond Branch % 17.9 15.1 17 158 74 157
Uncond Branch 1357118 21261679 3657698 242833 3444961 248616
Uncond Branch % 8.1 8.7 7 3.8 4.8 3.8
Trap 8070 33863 28080 1721 250022 1990
Trap % 0 0 o1 0 03 0
Rte 0 0 (¢] 0 o 0]
Rte % 0 0 0 0 0 o
Control 2 2 2 2822 600038 3506
Control % 0 0 0 0 08 0.1
Load Latency 249 3.09 2.68 236 27 237
Load Clocks 1.98 222 2.09 193 228 1.96
Load hits 1 89 1 0 0 0
Decoupled Loads 3795 632047 22054 2451 75 2280
Decoupled Stores 1902 131372 9883 52 8 45
address alias 11348 96035 29105 8452 36994954 9310
Id input full 2630 418023 10134 100 50013 175

Table 6: Experimental Data One Part Two (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

189

Parameter thl troff grops MatrixD Random MatrixF
Id output full o 0 0 0 0 0
st reservation full 188929 3952112 419605 90737 300178 87490
Cond store 683 26568 777 251 32 504
Inst/Branch 385 421 4.17 513 823 511
BTC hits 767900 8273839 1959839 231624 1293409 212576
BTC misses 349474 5624873 837792 129272 327839 107565
Correct Pred 1493244 14382316 4284761 419264 2526341 440644
Incorrect Pred 510926 9029527 1835329 229948 1973388 235952
History Depth 1.13 068 0.94 1.05 1.97 1.04
Flush History 398147 490484 1176959 141948 2610683 141827
Flush Stall 0 0 0 0 0 0
Accesses 11449352 | 170602407 | 36650791 | 4573349 | 50812134 | 4486232
Hits 11234518 | 161190694 | 35874679 | 4467893 | 50811549 | 4385177
Stream Hits 69855 2403975 203959 28290 151 30041
Misses 144979 7007738 572153 77166 434 71014
Ratio 98.73 95.89 98.44 98.31 100 98.42
Accesses 5477952 88043268 18403191 | 1056840 | 19413113 1048186
Hits 5442617 85243946 18154903 | 1051148 | 19412832 | 1041727
Stream Hits 1336 167405 807 256 3 226
Misses 33999 2631917 247481 5436 278 6233
Copybacks 23976 1129689 99850 3877 6+ 4135
Ratio 99.38 97.01 98.66 99.49 100 99.41
Cycles used 1524308 86292224 6836127 703681 5895 651603
Conlflicts 13269 1065878 24774 1675 107 1743
Bus Utilization 0.095235 0.281954 0.123221 | 0.060141 | 0.000061 | 0.055756
Accesses 0 0 0 0 0 o
Misses 0 0 0 0 o 0
Ratio o 0 0 0 0 0

Table 6: Experimental Data One Part Two (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

Parameter tbl troff grops MatrixD Random MatrixF
Accesses o 0] 0 (0] 0 0
Misses o o] 0 0 0 o
Ratio 0) 4] 0 (0] 0
exit 1 1 1 1 1 1
read 33 207 128 0 0 0
write 8027 33567 27880 539 0 523
open 0 28 24 0 0 0
close 0 15 11 0 (0] 0
brk 4 10 2 2 2 2
time 0 1 I 0 o 0
times 0 0 0 0 0 0
sysconf o o 0 0 o 0
ioct! 3 17 15 0 0 0
Iseek 0 0 1 0 0 0
fstat 2 16 14 0 0 0
getpid 0 1 t 0 0 0
fentl 0 0 0 4 4 4
access 0 0 1 0 0 0
creat 0 (¢ V] 0 0 0
unlink 0 () 1 0 0 0
stat 0 0 0 0 4] (o]
Istat 0] 0 0 0 0] 0
Updates 541485 10955610 1628129 73617 1300713 78931
Bytes Allocated 24371792 | 457432656 | 64888848 | 5724832 | 48020800 | 5849792
Lines Allocated 869485 15871526 2282433 187998 1750761 193453
Bytes Deallocated 24371744 | 457432080 | 64888800 | 5724784 | 48020752 | 5849744
Lines Deallocated 869483 15871507 2282431 187996 1750759 193451
Max Depth 2000 6672 2944 6928 544 6960

Table 6: Experimental Data One Part Two (Continued)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

191

Parameter tbl troff grops MatrixD Random MatrixF
Max Lines 65 212 95 220 19 222
Mallocs 8353 111434 2897 271 25 271
Bytes Malloc 101357 3393967 324299 54278 3018 36482
Lines Malloc 9493 171767 11230 1790 104 1257
Frees 8484 94622 2929 259 21 259
Jsr/Bsr 341061 8841575 1193526 84831 1578118 88562
Jmprl 325130 7531027 1054925 57054 1328085 59394
Leaf Nodes 229405 4593390 710450 43285 1027836 43540

Table 6: Experimental Data One Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

192

C.1.3 Experiment One Part Three Data

Parameter hsim mpsdemo z80sim photon
Cycles 50278779 | 1434388 164915003 | 77018190
Instructions 51083648 | 1035196 168680934 | 66729117
IPC 1.016008 | 0.721699 1.022836 0.866407
Two Inst 15421157 250596 49402361 19041135
One [nst 20241334 | 534004 69876212 | 28646847
Zero Inst 14616288 649788 45636430 | 29330208
No Inst 8303010 555336 40118965 | 20809056
Source Unav 17449848 | 334947 38431225 19762438
Destination Unav 202775 26845 226287 1564476
Pipe Full 0 0 0 0
Reservation Full 202263 8734 1579908 1770988
DMU B/'W 6729248 188913 29597510 430770
Empty D Slot 1261569 59290 5084051 2794300
Branch-Branch 705962 7759 394718 968313
History Full 0 48 0 5
Serialized 968 913 16 412673
Carry bit (] 0 0 0
Decode Error 0 0 0 0

i 1 i t
Integer 1 18035714 | 350688 60896769 | 24970887
Integer 1 % 353 339 36.1 374

2 2 2 2
Integer 2 1840245 31266 7040142 2583410
Integer 2 % 36 3 42 39
Load 14533102 | 328950 45227784 14940702
Load % 284 31.8 26.8 24
Store 4094789 151390 25616181 9598358

Table 7: Experimental Data One Part Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Parameter hsim mpsdemo Z80sim photon
Store % 8 14.6 152 144
Float Add 0 o 0 819012
Float Add % 0 0 0 1.2
Float Mul 953352 476 0 933456
Float Mul % 19 0 0 14
Float Div 201380 283 0 355089
Float Div % 04 0 0 0.5
Graph Add 0 0 0 0
Graph Add % 0 0 0 o
Graph Bit 0 0 0 0
Graph Bit % 0 0 0 0
Cond Branch 8593194 91109 11016342 7661540
Cond Branch % 168 88 6.5 11.5
Uncond Branch 2830918 80566 18883707 4743389
Uncond Branch % 55 78 11.2 7.1
Trap 952 466 7 36872
Trap % 0 0 0 0.1
Rie 0 0 0 0
Rte % 0 0] 0 (0]
Control 2 2 2 86402
Control % 0 0 0 0.1
Load Latency 22 26 235 2.5¢
Load Clocks 191 2.05 1.81 1.95
Load hits t] 1 0 (0]
Decoupled Loads 70 1350 18496 89794
Decoupled Stores 12 84 4 1838
address alias “ 11618 202886 462922
Id input full 1t “ 0 20220

Table 7: Experimental Data One Part Three (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

193

194

Parameter hsim mpsdemo Z80sim photon
Id output full 0 0] 0 0
st reservation full 202252 8690 1579908 1750768
Cond store 66 432 0 12666
Inst/Branch 447 6.03 564 538
BTC hits 4482823 21191 1945204 1734687
BTC misses 2015 58056 1196668 3113527
Correct Pred 4430702 46774 5672435 3396861
Incorrect Pred 1694922 26160 400522 1450636
History Depth 1.25 092 046 0.96
Flush History 1313908 16538 185385 1059757
Flush Stall o] o o 0
Accesses 35504441 704740 122725551 | 47838592
Hits 35499272 639899 120328223 | 45818533
Stream Hits 1962 12248 491494 512682
Misses 3207 52593 1905834 1507377
Ratio 99.99 92.54 9845 96.85
Accesses 17719803 72417 70825524 24099189
Hits 17719564 467025 70806364 | 23943189
Stream Hits 1 109 5 1678
Misses 238 5283 19155 154322
Copybacks 25 2753 6573 66812
Ratio 100 98.88 99.97 99.36
Cycles used 24933 498069 15569111 13511099
Conflicts 60 2863 9907 35373
Bus Utilization 0.000496 | 0347235 | 0.094407 0.175427
Accesses o 0 0 0
Misses ¢] 0 0 o
Ratio 0] 0 0] Q

Table 7: Experimental Data One Part Three (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

Parameter hsim mpsdemo z80sim photon
Accesses 0 0 0 o
Misses Q 0 0 0
Ratio 0 0 0 0
exit 1 1 1 1
read 36 14 0 8
write 7 433 0 849
open 1 6 0 4
close 0 6 0 4
brk 2 2 2 2
time 0 0 0 0
times 0 0 0] 0
sysconf 0 0 0 0
ioct] 0 0 0 0
Iseek Q 0 o 0
fstat 0 o 0 0
getpid 0 0 o 0
fentl 5 + 4 1
access 0 0 0 0
creat 0 0 0 0
unlink 0] 0 V]
stat 0 0 0 0
Istat 0 0 0 0
Updates 1616353 75330 9008479 2966840
Bytes Allocated 51728576 1615248 | 548799536 | 13031651

2
Lines Allocated 1718440 58887 18022579 4313879
Bytes Deallocated 51728528 1615200 | 548799488 | 13031646

4
Lines Deallocated 1718438 58885 18022577 4313877

Table 7: Experimental Data One Part Three (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

195

196

Parameter hsim mpsdemo Z80sim photon
Max Depth 560 1920 784 32448
Max Lines 19 65 27 1017
Mallocs 13 173 10 3730
Bytes Malloc 5280 27580 68221 799360
Lines Malloc 167 930 2133 25160
Frees 0 138 0 4
Jst/Bsr 1112760 33367 6833472 1713932
Jmprl 1011636 27570 6833468 1453952
Leaf Nodes 505713 15241 4805653 1112470

Table 7: Experimental Data One Part Three (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

197
C.2 Experiment Two Data

C.2.1 Experiment Two Part One Data

Parameter chkbom genbom listbom soelim pic eqn
Cycles 19511414 | 19738853 565105 5907705 23610691 | 39290174
Instructions 235336534 | 23638330 514187 6834912 | 22264991 | 41253187
IPC 1.206296 | 1.197553 | 0.909896 1.156%49 | 0.943005 1.049962
Two Inst 6445497 6482237 147711 2242591 6941378 12980886
Ore [nst 10645540 | 10673856 218765 2349730 8382235 15291415
Zero Inst 2420377 2582760 198629 1315384 8287078 11017873
No Inst 2335623 2452540 179562 T79368 6797799 9739786
Source Unav 8500794 8568048 125256 1636584 6250138 9555989
Destination Unav 18131 13058 4227 3491 232259 92275
Pipe Full 0] (0] 0 0 0 0
Reservation Full 6340 11965 4829 47 163743 956382
DMU B'W 2148550 2149335 66992 621149 1998237 2654610
Empty D Slot 35107 34466 25563 349724 598615 1329498
Branch-Branch 14269 17760 9024 264713 508384 1913932
History Full 74 129 9 537 9283 1336
Serialized 5131 5335 209 4862 7438 60901
Carry bit 0 4] 0 o 308 5
Decode Error 0 0 0 0 0 0

1 1 1 ! 1 3
Integer 1 10650616 | 10698071 193203 2361583 8711837 15246791
Integer 1 % 453 453 37.6 346 39.1 37

2 2 2 2 2 2
Integer 2 2105314 2104606 14686 273728 896380 1151721
Integer2 % 89 8.9 29 4 4 28

Table 8: Experimental Data Two Part One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

198

Parameter chkbom genbom listbom soelim pic eqn
Load 6372347 6381817 124601 1514788 4830372 8881305
Load % 27.1 27 242 22 21.7 215
Store 2155998 2182008 62313 894573 2561082 4952775
Store % 92 9.2 12.1 13.1 1L.5 12
Float Add 0 0 o 0 32849 0
Float Add % 0 0 0 0 0.1 0
Float Mul 4622 2776 2475 0 359956 2758
Float Mul % 0 0 0.5 0 03 (]
Float Div 162 ™1 0 12 34147 18237
Float Div % 0 0 0 0 02 0
Graph Add 0 0 0 0 0 0
Graph Add % o 0 0 0 1] 0
Graph Bit c 0 0 0] 0 0
Graph Bit % 0 0 0 0 0 0
Cond Branch 21935602 2200518 91876 1246191 3479676 8099126
Cond Branch % 93 93 17.9 18.2 15.6 19.6
Uncond Branch 49208 65074 24930 541595 1654967 2870025
Uncond Branch % 02 03 48 79 74 7
Trap 2663 2667 101 2440 373 30447
Trap % 0 0 (¢} 0 0 0.1
Rte 0 0 o 0 0 0
Rte % 0 0 0] 0] 0 0
Control 2 2 2 2 2 2
Control % 0 0 0 0 0 0
Load Latency 268 271 258 268 298 254
Load Clocks 201 202 2 202 225 204
Load hits 0 0 0 0 0 0
Decoupled Loads 1887 3900 1046 1302 36881 30523

Table 8: Experimental Data Two Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

199

Parameter chkbom genbom listbom soelim pic eqn
Decoupled Stores 1846 2100 35 1397 4688 8622
address alias 278 141 70 216 15898 31617
Id input full 350 23 191 184 6161 2895
Id output full 0 0 0 0 0 0
st reservation full 5990 11942 4638 4263 157582 953487
Cond store 68 89 9 0 12210 3195
Inst/Branch 10.48 10.43 44 3.8 434 376
BTC hits 28868 23212 16414 522032 929443 2873123
BTC misses 10839 20270 9197 3866 324714 524608
Correct Pred 46539 42755 38089 618898 1480763 3921208
Incorrect Pred 25107 24361 15806 96483 746749 1275693
History Depth 0.66 0.57 0.9 2.68 1.25 L44
Flush History 13653 11300 11356 173754 678798 1117761
Flush Stall 0 0 0 0 0 0
Accesses 14993775 | 15051193 347636 4945784 | 15495013 | 27658688
Hits 14971384 | 15013610 332637 4941777 15023614 | 27214422
Stream Hits 5458 9195 3314 1036 136820 110314
Misses 16933 28388 11685 2971 334579 333952
Ratio 99.89 99.81 96.64 99.94 97.84 98.79
Accesses 8525113 8561576 183190 2239325 7080051 13481986
Hits 8513150 8541704 181642 2236310 6929089 | 13393649
Stream Hits 20 59 13 7 1810 1911
Misses 11943 19813 1535 3008 149152 86426
Copybacks 3004 6370 807 2139 49130 38039
Ratio 99.86 99.77 99.16 99.87 97.89 99.36
Cycles used 287289 477198 132330 67384 4693655 3971867
Conflicts 1411 1664 828 431 49079 23046
Bus Utilization 0014724 | 0.024176 | 0234169 | 0011406 { 0.198794 | 0.101091

Table 8: Experimental Data Two Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

200

Parameter chkbom genbom listbom soelim pic eqn
Accesses 0 0 0 0 0 0
Misses 0 0 0 0 (0] 0
Ratio 0 0 0 0 0 0
Accesses 0 0 0 0 o 0
Misses 0 0 0 0 o 0
Ratio 0 0 0 0 0 0
exit I 1 i 1 1 I
read 2154 2150 7 30 3 55
write 0 6 85 2381 3692 30379
open 84 84 1 5 0 2
close 84 85 1 5 0 |
brk 2 2 2 4 2 2
time 0 0 0 0 o 0
times 0 0 Q ¢] 0 0
sysconf 0 0 0 1] 0] 0
ioctl 83 83 0 7 3 4
Iseek 0 0 0 0 0 0
fstat 8 83 0 7 2 3
getpid 0 0 0 0 0 0
fentl 4 4 4 0 0 (0]
access 0 0 0 0] 0 0
creat 0 1 0 0 0 0
unlink 0] 0 0 1] 0 0
stat 0 0 0 0] 0 0
Istat 168 168 0 0 0 0
Updates 19287 29493 11633 181889 732679 87375
Bytes Allocated 1016080 1214288 483616 7260032 | 26934976 | 57495376
Lines Allocated 33270 41725 16380 270579 947548 1952867

Table 8: Experimental Data Two Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\\w.manaraa.con

201

Parameter chkbom genbom listbom soelim pic eqn
Bytes Deallocated 1016032 1214240 483568 7259984 | 26934928 | 57495328
Lines Deallocated 33268 41723 16378 270577 947546 1952865
Max Depth 3776 3952 2224 2112 2912 2160
Max Lines 121 126 73 68 96 70
Mallocs 439 603 187 393 4857 6834
Bytes Malloc 355494 378215 9859 33482 251743 150742
Lines Malloc 11312 12025 382 1293 10400 8596
Frees 255 589 2 331 4858 6839
Jst/Bsr 24654 31988 13790 95596 595144 1081521
Jmprl 18537 27540 7586 94575 529333 644900
Leaf Nodes 11053 17603 3445 87786 329485 H9xH

Table 8: Experimental Data Two Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

202

C.2.2 Experiment Two Part Two Data

Parameter tbl troff grops MatrixD Random MatrixF
Cycles 16219988 | 318438167 | 56459296 | 11799065 | 97090701 | 1177903
[nstructions 16836453 | 243691616 | 52607537 | 6465414 | 72045628 | 6471129
IPC 1.038007 | 0.765271 0931778 0.54796 0.742045 | 0.549376
Two [nst 5265546 | 72743261 | 16184343 1955520 | 21455020 | 1908513
One Inst 6305361 98205094 | 20238851 | 2554374 | 29135588 | 2654103
Zero Inst 4649081 | 147489812 | 20036102 | 7289171 | 46500093 | 7216437
No Inst 4257683 | 110455185 | 13965623 1772308 | 8900004 1810580
Source Unav 3977585 | 82721875 | 18083915 | 7299587 | 44927433 | 7309809
Destination Unav 71793 4931281 394291 37664 6427809 41756
Pipe Full 1] 0 0 0 0 0
Reservation Full 196867 4776065 460341 93217 350232 89893
DMU B'W 1128537 | 26800997 | 4520544 358087 6474022 357863
Empty D Slot 652729 7367322 1231202 183973 899181 183100
Branch-Branch 642099 8198350 1428333 54774 655476 31427
History Full 2074 38983 S5 1052 0 288
Serialized 16135 67695 56130 15535 3100194 17992
Carry bit 2249 4492 I 0 0 0
Decode Error 1] 0 0 0 0 0

1 1 I 1 1 1
Integer 1 6113326 | 86665890 | 19559382 | 2644243 | 20512685 | 2667562
Integer | % 363 356 372 409 285 412

2 2 2 2 2 2
Integer 2 677233 7120183 1403794 195194 3878680 176690
Integer 2 % 4 29 2.7 3 54 27
Load 3460423 60489293 | 12711266 72114 14079364 715368
Load % 206 248 24.2 11.2 19.5 1L.1
Store 2201524 | 30095059 | 6119781 358988 6275375 355881

Table 9: Experimental Data Two Part Two

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

203

Parameter thl troff grops MatrixD | Random | MatrixF
Store % 13.1 123 116 56 8.7 5.5
Float Add 0 95739 4 207708 | 11801319 | 214409
Float Add % 0 0 0 32 164 33
Float Mul 4706 486537 19355 796831 | 317973 | 795374
Float Mul % 0 02 0 123 74 123
Float Div 1246 757367 1390028 | 274603 | 570988 274317
Float Div % 0 03 03 42 08 42
Graph Add 0 0 0 0 0 0
Graph Add % 0 0 0 0 0 0
Graph Bit 0 0 0 0 0 0
Graph Bit % 0 0 0 0 0 0
Cond Branch 3012805 | 36685263 | 8969156 | 1018370 | 314223 | 1017416
Cond Branch % 179 15.1 17 158 74 157
Uncond Branch 1357118 | 21262420 | 3657689 | 242820 | 3444961 | 248616
Uncond Branch % 8.1 87 7 38 48 38
Trap 8070 33863 28080 1721 250022 1990
Trap % 0 0 0.1 0 03 0
Rte 0 0 0 0 0 0
Rie % 0 0 0 0 0 0
Control 2 2 2 2822 600038 3506
Control % 0 0 0 0 08 0.1
Load Latency 2.52 33 275 238 27 239
Load Clocks 2 228 2.11 1.94 228 1.97
Load hits 1 103 1 0 0 0
Decoupled Loads 25910 709175 23701 2908 84 2733
Decoupled Stores 1916 134120 9813 52 7 46
address alias 11973 117000 29706 8606 3699496 9740
Id input full 3307 493987 12766 119 50016 211

Table 9: Experimental Data Two Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

204

Parameter thl troff grops MatrixD | Random | MatrixF
1d output full 0 0 o 0 0 0
st reservation full 193560 | 4282078 | 447575 93098 300216 89682
Cond store &34 36931 1089 273 52 525
InstBranch 385 421 4.17 5.13 8.3 5.11
BTC hits 767911 | 8275296 | 1960452 | 231464 | 1293409 | 212808
BTC misses 349420 | se24247 | 837131 120429 | 327839 107319
Correct Pred 1493340 | 14384086 | 4284878 | 419243 | 2526334 | 440743
Incorrect Pred 510069 | 9029424 | 1835304 | 229949 | 1973388 | 235970
History Depth 113 0.68 0.54 105 1.97 1.04
Flush History 398219 | 4909465 | 1176809 | 141931 | 2610683 | 141785
Flush Stall 0 0 0 0 0 0
Accesses 11449994 | 170619111 | 36649435 | 4573494 | 50812148 | 4485360
Hits 11234815 | 161207221 | 35872809 | 4468041 | 50811563 | 4383931
Stream Hits 70448 | 2402516 | 204253 28288 151 30205
Misses 144731 | 7009374 | 572373 77165 434 71224
Ratio 98.74 95.89 9844 9831 100 B4l
Accesses 5477910 | 88042859 | 18403255 | 1056840 | 19413114 | 1048187
Hits 5442607 | 85242126 | 18155152 | 1051148 | 19412833 | 1041728
Stream Hits 1343 167979 ™2 256 3 26
Misses 33960 2632754 | 247331 5436 278 6233
Copybacks 23927 1131248 | 9977 3877 64 4135
Ratio 99.38 97.01 98.66 99.49 100 99.41
Cycles used 1745528 | 98938498 | 7830840 | 804973 6759 748168
Conflicts 13233 1080678 | 24933 1702 109 1759
Bus Utilization 0.107616 | 0310699 | 0.138699 | 0068223 | 0.00007 | 0.063517
Accesses 0 0 0 0 0 0
Misses 0 0 0 0 0 0
Ratio 0 0 0 0 0 0

Table 9: Experimental Data Two Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

205

Parameter tbl troff grops MatrixD Random MatrixF
Accesses 0 1] 0 0 0 0
Misses 0 0] 0 0 0 0
Ratio 0 0 0 0 0 0
exit 1 1 1 1 1 1
read 33 207 128 0 0 0
write 8027 33567 27880 339 0 523
open 0 28 24 0 0 0
close 0 15 11 0 0 0
brk 4 10 2 2 2 2
time 0 1 1 o 0 o
times 0 1] 0 0 0 0
sysconf 0 4] 0 0 0 ¢]
ioctl 3 17 15 0 0 0
Iseek 0 0 1 0 0 0
fstat 2 16 14 0 0 0
getpid 0 1 1 0 0 0
fentl 0 o 0 4 4 4
access 0 0 1 o 0 0
creat 0] 0 0 0 0]
unlink 0 0 1 0 0 0
stat 0 0 0 0 0 0]
Istat 0 0 0 0 0 0
Updates 541449 10958780 1628113 73617 1300713 78905
Bytes Allocated 24370304 | 457537632 | 64888560 | 5724832 | 48020800 | 5849392
Lines Allocated 869433 15874725 2282417 187998 1750761 193435
Bytes Deallocated 24370256 | 457537056 | 64888512 | 5724784 | 48020752 | 5849344
Lines Deallocated 869431 15874706 2282415 187996 1750759 193433
Max Depth 2000 6672 2944 6928 54 6960

Table 9: Experimental Data Two Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

206

Parameter tbl troff grops MatrixD Random MatrixF
Max Lines 65 212 95 220 19 222
Mallocs 8353 111509 2897 271 25 271
Bytes Malloc 101357 3394867 324299 54278 3018 36482
Lines Malloc 9493 171842 11230 1790 104 1257
Frees 8481 94622 2931 259 21 259
Jst/Bsr 341056 8841692 1193513 84818 1578118 88562
Jmprl 325149 7531295 1054927 57054 1328085 59394
Leaf Nodes 229405 4593273 710450 43285 1027836 43540

Table 9: Experimental Data Two Part Two (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

207

C.2.3 Experiment Two Part Three Data

Parameter hsim mpsdemo z80sim photon
Cycles 50282309 | 1505153 | 167140237 | 78878275
Instructions 51083648 | 1035032 | 168680934 | 66728571
IPC 1.015937 | 0.687659 1.009218 0.845969
Two I[nst 15421157 250424 49402361 19038341
One Inst 20241334 534184 69876212 | 28651889
Zero Inst 14619818 720545 47861664 | 31188045
No Inst 8306349 620587 42338677 | 22544362
Source Unav 17449962 338583 38435865 | 19816338
Destination Unav 202789 28073 226297 1588499
Pipe Full 0 0 0 0]
Reservation Full 202285 9386 1580750 1807562
DMU B'W 6729246 188616 29597510 9453608
Empty D Slot 1261569 59377 5084051 2793474
Branch-Branch 706002 8110 394744 970564
History Full 0 68 0 10
Serialized 971 913 19 409895
Carry bit 0 0 4] 0]
Decode Error 0 0 0 0

1 I i 1
Integer | 18035714 | 350624 60896769 | 24970964
Integer | % 353 339 36.1 374

2 2 2 2
Integer 2 1840245 31267 7040142 2582983
Integer 2 % 36 3 42 39
Load 14533102 328880 45227784 | 14940641
Load % 284 31.8 268 224
Store 4094789 151389 25616181 9598204

Table 10: Experimental Data Two Part Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

Parameter hsim mpsdemo 280sim photon
Store % 8 14.6 152 144
Float Add 0 0 0 819012
Float Add % 0 0 0 1.2
Float Mul 953352 476 0 933456
Float Mul % 1.9 0 0] L4
Float Div 201380 283 0 355089
Float Div % 04 0 0] 05
Graph Add 0 0 0 (¢
Graph Add % 0 0 0 0]
Graph Bit 0 0 0 0
Graph Bit % 0 0 o 0
Cond Branch 8593194 91109 11016342 7661540
Cond Branch % 168 88 6.5 115
Uncond Branch 2830918 80536 18883707 4743408
Uncond Branch % 55 78 11.2 7.1
Trap 952 466 7 36872
Trap % 0 0 0 0.1
Rte 0 0 0 0]
Rte % 0 0 0 0
Control 2 2 p 86402
Control % 4] 0 o 0.1
Load Latency 22 265 235 2.56
Load Clocks 191 2.07 1.81 1.96
Load hits 0 1 0 0
Decoupled Loads 76 1568 24648 104448
Decoupled Stores 12 89 4 1757
address alias 5t 12029 202896 456459
Id input full 21 77 0 26065

Table 10: Experimental Data Two Part Three (Continued)

208

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

Parameter hsim mpsdemo z80sim photon
1d output full 0 0 o 0
st reservation full 202264 9309 1580750 1781497
Cond store 86 555 0 17786
[nst/Branch 447 6.3 564 538
BTC hits 4482823 21239 1945204 1734374
BTC misses 2015 57947 1196668 3112904
Correct Pred 4430702 46752 5672435 3396769
Incorrect Pred 1694922 26124 400522 1450616
History Depth 1.25 091 046 0.96
Flush History 1313908 16472 185385 1059487
Flush Stall 0 0 0 0
Accesses 35504442 704515 122725551 | 47838763
Hits 35499273 639571 120328223 | 45820666
Stream Hits 1962 12362 491494 509965
Misses 3207 52582 1905834 1508132
Ratio 99.99 92.54 98.45 96.85
Accesses 17719803 472401 70825524 | 24099198
Hits 17719564 | 467007 70806364 | 23942889
Stream Hits 1 1t 5 1670
Misses 238 5283 19155 154639
Copybacks 25 273 6573 66967
Ratio 100 98.88 99.97 99.36
Cycles used 28506 570127 17795624 | 15460607
Conflicts 61 2928 9907 36601
Bus Utilization 0.000567 | 0.378783 0.106471 0.196006
Accesses 0 0 0 0
Misses 0 0 0 0
Ratio 0 0 0 0

Table 10: Experimental Data Two Part Three (Continued)

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Parameter hsim mpsdemo 280sim photon
Accesses 0 0 0 0
Misses 0 0 o 0
Ratio 0 0 0 0
exit 1 1 1 1
read 936 14 0 8
write 7 433 o 849
open i 6 0 4
close 0 6 0 4
brk 2 2 2 2
time 0 0 0] 0
times 0 0 o 0
sysconf 0 o 0 0
ioctl 0 0 0 0
Iseek 0 0 0 0
fstat 0 o 0] 0
getpid 0 0 0 0
fentl 5 4 4 4
access 0 0 0 0
creat 0 o 0] 0
unlink 0 o] 0
stat 0 0 o 0
Istat 0 0 0 0
Updates 1616353 75240 9008479 2966768
Bytes Allocated 51728576 | 1613440 | 548799536 | 13031497

6
Lines Allocated 1718440 58819 18022579 | 4313815
Bytes Deallocated 51728528 | 1613392 | 548799488 | 13031492

8
Lines Deallocated 1718438 58817 18022577 | 4313813

Table 10: Experimental Data Two Part Three (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

210

211

Parameter hsim mpsdemo Z80sim photon
Max Depth 560 1920 784 32448
Max Lines 19 65 27 1017
Maliocs 13 172 10 3730
Bytes Malloc 5280 27560 68221 799360
Lines Malloc 167 929 2133 25160
Frees 0 139 0 4
Jst/Bsr 1112760 33345 6833472 1713952
Jmprl 1011636 27570 6833468 1453952
Leaf Nodes 505713 15235 4805653 1112475

Table 10: Experimental Data Two Part Three (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

212
C.3 Experiment Three

C.3.1 Experiment Three Part One Data

Parameter chkbom genbom listbom soelim pic eqn
Cycles 19510051 | 19726812 587493 6211244 | 26003858 | 44639517
Instructions 23562853 | 23672337 527195 6886673 | 23504749 | 47417814
IPC 1.207729 1.200008 | 0.897364 | 1.108743 | 0.903895 | 1.062239
Two Inst 6456723 6492832 158059 2095328 7376352 | 15275116
One [nst 10649407 | 10686673 211077 2696017 8752045 | 16867582
Zero Inst 2403921 2547307 218357 1419899 9875461 12496819
No Inst 2372283 4551023 202886 1219084 8036491 11650344
Source Unav 8462933 8496547 125165 1810112 6978833 11051950
Destination Unav 11011 23322 3168 1157 179633 71400
Pipe Full 0 0] 1] 0 0
Reservation Full 4160 27964 2411 10496 162191 911437
DMU B/W 2148717 73236 60943 453729 1929737 3371785
Empty D Slot 33485 34574 25130 353614 66438+ 985499
Branch-Branch 13794 17824 7930 262490 509430 1255903
History Full 70 52 12 125 8478 617
Serialized 5103 5397 206 4863 7429 60933
Carry bit 0 0] 0 0 49 3
Decode Error 0 0 0 0] 0] 0

1 1 1 1 1 1
Integer 1 10660261 | 10712464 193319 2465411 9224933 18740482
Integer | % 452 453 36.7 358 39.2 39.5

2 2 2 2 2 2
Integer 2 2105469 2104720 20254 192424 990546 1668474
Integer2 % 89 89 38 28 4.2 35
Load 6375910 6386883 125774 1439755 4969920 9542619

Table 11: Experimental Data Three Part One

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

213

Parameter chkbom genbom listbom soelim pic eqn
Load % 27.1 27 23.9 209 21.1 20.1
Store 2159954 2186798 64034 904271 2699595 5629296
Store % 92 92 12.1 13.1 115 119
Float Add 0] 0 0 0 32825 0
Float Add % o 0 0 0 0.1 0
Float Mul 4622 2776 2475 0 59956 2758
Float Mul % 0 0 0.5 o 03 o
Float Div 162 791 0 12 34147 18237
Float Div % 0 0 0 0 0.1 (]
Graph Add 0 o 0 0 0 o
Graph Add % 0 0 0 0 0 o
Graph Bit 0 0 0 0 0 0
Graph Bit % 4] 0 0 (0] 0 0
Cond Branch 2196496 2200886 92430 1249258 | 3538070 8185907
Cond Branch % 93 93 17.5 18.1 15.1 173
Uncond Branch 57314 74350 28806 633100 1951024 3599586
Uncond Branch % 02 03 35 9.2 83 76
Trap 2663 2667 101 2440 3731 30453
Trap % 0 o 0 0 0 0.1
Rte 0 o] 0 0 0 0
Rte % 0 o 0 0 0 0
Control 2 2 2 2 2 2
Control % 0 0 0 Q 0 0
Load Latency 267 2.69 247 243 33 26
Load Clocks 2 201 1.95 1.95 233 204
Load hits 0 0 0 0 0 2
Decoupled Loads 1778 4120 838 425 41654 16207
Decoupled Stores 61 187 i1 1086 13432 9756

Table 11: Experimental Data Three Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

214

Parameter chkbom genbom listbom soclim pic eqn
address alias 124 175 66 228 19170 21444
Id input full 521 10552 141 259 5597 3382
Id output full 0 0 0 0 0] 0
st reservation full 3639 17412 2270 10237 156594 908055
Cond store 59 4 70 60 10632 1746
InstBranch 10.45 104 435 3.66 428 402
BTC hits 28647 22790 20566 356666 804374 2301598
BTC misses 13339 20575 10064 91637 434652 679193
Correct Pred 46475 42824 33588 705425 1474576 4108299
Incorrect Pred 24911 24047 15713 180893 755948 1142035
History Depth 0.63 061 0.89 1.44 09 1.02
Flush History 13002 11707 11249 176515 532155 856043
Flush Stall 0 0 0 0 0 0
Accesses 17083046 { 17152035 348928 4629901 | 16131631 | 32218591
Hits 17055967 | 17111772 330556 4623268 | 15538935 | 31640803
Stream Hits 6685 10041 3892 1821 151053 168751
Misses 20394 30222 14480 4812 441643 409037
Ratio 99.88 99.82 95.85 99.9 97.26 9873
Accesses 8532834 8571398 186498 2257437 7414627 | 14836211
Hits 8529378 8559532 185395 2254729 | 7218847 14763888
Stream Hits 31 67 15 23 4061 1375
Misses 3425 11799 1088 2685 191719 70948
Copybacks 1846 5131 567 1933 87305 31000
Ratio 99.96 99.86 99.42 99.88 97.41 99.52
Cycles used 247678 421641 156386 79931 6376233 4793495
Conflicts 1996 2708 607 338 62646 21697
Bus Utilization 0.012695 | 0.021374 | 0266192 | 0.012869 | 0.245203 | 0.107382
Accesses 0 0 0 0 0 0

Table 11: Experimental Data Three Part One (Continued)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

215

Parameter chkbom genbom listbom soelim pic eqn
Misses 0 0 0 1] 0 o
Ratio o 0 o 0 o 0
Accesses 0 0 0 0 0 0
Misses 0 0 0 0 0 0
Ratio 0 0 0 0 1] 0
exit 1 1 1 1 1 1
read 2154 2150 7 30 3 55
write 0 6 85 2381 3692 30379
open 84 84 1 5 0 2
close 84 85 1 5 0 1
brk 2 2 2 4 10 8
time 0 0 0 0 o 0
times 0 0 0 o 0 0
sysconf o 0 0 0 0 0
ioctl 8 3 0 7 3 4
Iseek 0] 0 0 0 0 0
fstat <] 83 0 7 2 3
getpid 0 -0 0 0 0 o
fentl 4 4 4 0 0 0
access 0 0 0 0 0 0
creat 0 1 0 0] 0 0
unlink 0 0 0 0 o] 0
stat 0 0 0 0 0 0
Istat 168 168 0 0 (] o
Updates 25919 37625 13959 187111 808767 1473699
Bytes Allocated 1179408 1412352 543520 7432752 | 29473392 | 77343984
Lines Allocated 39902 49857 18704 276215 1027620 2593692
Bytes Deallocated 1179360 1412304 543472 7432704 | 29473344 | T7343936

Table 11: Experimental Data Three Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

216

Parameter chkbom genbom listbom soelim pic eqn
Lines Deallocated 39900 49855 18702 276213 1027618 2593690
Max Depth 3760 3936 2224 2192 2864 2176
Max Lines 121 125 - 71 95 7
Mallocs 439 603 187 396 4861 6844
Bytes Malloc 355494 378215 9859 53962 285455 206038
Lines Malloc 11312 12025 382 1933 11452 10324
Frees 255 589 2 331 4867 6836
Jsr/Bsr 28592 36654 15524 98335 712172 1443010
Jmprl 22547 3i814 9273 96955 677585 1215922
Leaf Nodes 12365 18241 4570 8482 433657 968084

Table 11: Experimental Data Three Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

C.3.2 Experiment Three Part Two Data

217

Parameter tbl troff grops MatrixD | Random | MatrixF
Cycles 16934597 | 371279568 | 59337227 | 12012310 | 99535273 | 12086624
Instructions 17934096 | 286013430 | 58546384 | 6510246 | 73327244 | 6523335
IPC 1059021 | 0.770345 | 0986672 | 0.541965 | 0.736696 | 0.541957
Two Inst 5656007 | 87522023 | 18098333 | 1981555 | 21315413 | 1925318
One Inst 6622082 | 110969384 | 22349718 | 2547136 | 30696418 | 2672699
Zero Inst 4656508 | 172788161 | 18889176 | 7483619 | 47523442 | 7438607
No Inst 4031257 | 141246620 | 1497739 | 1996663 | 11068654 | 2077384
Source Unav 4158614 | 4317117 | 18323352 | 7297349 | 45287927 | 7300337
Destination Unav 14613 2547197 106665 37923 | 6402785 | 35854
Pipe Full 0) 0 0 0 0
Reservation Full 198249 | 2230467 | 385626 87898 250167 78360
DMU B'W 1566178 | 25882716 | 4720096 | 356137 | 6842853 | 351939
Empty D Slot 674538 | 9437117 | 1257410 | 179895 | 849175 183698
Branch-Branch 607850 | 7626318 | 1385082 | 35746 630491 33359
History Full 2590 31807 374 1065 0 436
Serialized 16126 67850 56159 15412 | 3050184 18709
Carry bit 2183 4854 1 0 0 0
Decode Error 0 0 0 0 0 0

1 1 1 1 1 1
Integer 1 6582558 | 108411579 | 22546145 | 2668756 | 21062381 | 2697461
Integer 1 % 367 379 385 41 287 414

2 2 2 2 2 2
Integer 2 685078 | 8999181 | 1770170 | 190296 | 3825351 | 169245
Integer 2 % 38 3.1 3 29 52 26
Load 3805567 | 64684717 | 13138664 | 726251 | 14156983 | 718681
Load % 212 2.6 224 11.2 193 i1
Store 2396924 | 33721072 | 6608924 | 359972 | 6552928 | 360857

Table 12: Experimental Data Three Part Two

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

218

Parameter tbl troff grops MatrixD Random MatrixF
Store % 134 118 113 55 89 55
Float Add 0 95739 4 207843 11776317 | 214555
Float Add % 0 0 0 32 16.1 33
Float Mul 4706 486669 19355 797540 317973 796161
Float Mul % 0 0.2 0 123 73 122
Float Div 1246 757522 139028 274602 570988 274317
Float Div % 0 0.3 02 42 08 4.2
Graph Add 0 0 0 0 0 0
Graph Add % 0 0 0 0 0 0
Graph Bit 0 0 0 0 0 0
Graph Bit % 0 0 0] 0 0 0
Cond Branch 3061765 | 37957241 8991478 1019892 314313 1018952
Cond Branch % 17.1 133 154 157 72 156
Uncond Branch 1388177 | 30865674 | 35304514 260551 3899950 267610
Uncond Branch % 77 108 9.1 4 53 4.1
Trap 8073 34034 28100 1721 250022 1990
Trap % 0 0 0 0 03 0
Rte 0 0 0 0 0 0
Rte % 0 0 0 0 0] 0
Control 2 2 2 282 600038 3506
Control % 0 0 0 0 0.8 0.1
Load Latency 2.64 3.24 246 235 2.69 238
Load Clocks 1.99 23 1.99 1.95 226 1.96
Load hits 1 67 0 0 o 1
Decoupled Loads 3334 426453 10297 3055 110 2207
Decoupled Stores 2419 137922 9112 53 3 59
address alias 11883 246815 30537 8353 3449496 9584
Id input full 1036 175940 15332 108 50002 209

Table 12: Experimental Data Three Part Two (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

219

Parameter tbl trofl grops MatrixD Random MatrixF
1d output full 0 o 0 0 0 0
st reservation full 197213 2054527 370294 87790 200165 78151
Cond store 1422 39589 789 455 62 746
Inst/Branch 4.3 4.16 4.1 508 7.96 507
BTC hits 1154037 9828905 2378548 234675 1626627 200116
BTC misses 251207 7955832 866809 129679 100228 129685
Correct Pred 1504392 14267319 | 3855549 424367 2579608 4239
Incorrect Pred 391861 8133772 1649333 229803 1848466 232682
History Depth 1.52 0.62 0.78 0.99 1.98 1.02
Flush History 404077 3812685 921689 136745 2435721 133669
Flush Stall] 0 0 0 0 0
Accesses 12584755 | 196220924 | 40746582 | 4490807 | 52690539 | 4512727
Hits 12382024 | 184011279 | 40099102 | 4347190 | 52489872 | 1379883
Stream Hits 54196 2994619 139468 39395 178 33341
Misses 148535 9215026 508012 104222 200489 99503
Ratio 98.82 953 98.75 97.68 99.62 978
Accesses 5854017 | 96036308 | 19365296 | 1063614 19634884 | 1056399
Hits 5834929 | 93159394 | 19302662 | 1057633 19654635 | 1050751
Stream Hits 824 148392 246 244 1 392
Misses 18264 2728522 62388 5737 248 5256
Copybacks 10469 1063986 28049 4114 27 36482
Ratio 99.69 97.16 99.68 99.46 100 9.5
Cycles used 1631608 | 123379888 | 35398451 1038760 1606729 1007702
Conflicts 3747 1134614 12676 1997 8 1760
Bus Utilization 0.096348 033231 0.090979 | 0.086475 | 0.016142 0.08372
Accesses 0 0 0 (4] 0 0
Misses 0 0 0 0 0 0
Ratio 0 0 0 0 0 0

Table 12: Experimental Data Three Part Two (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

220

Parameter tbl troff grops MatrixD Random MatrixF
Accesses 0 0 0 o 0 0
Misses 0 0 0 0 0 0
Ratio 0 o 0 0 0 0
exit i 1 1 1 1 1
read 33 207 128 o o 0
write 8027 33567 27880 539 0 523
open 0 28 24 o 0 0
close 0 15 11 0 0 0
brk 7 181 22 2 2 2
time) 1 1 0] 0 0
times 0 0 0] 0 0 o
syscoaf 0 0 0 0 0 0
ioctl 3 17 15 4] 0 0
Iseek 0 4] 1 0 0 0
fstat 2 16 14 0] 0
getpid 0 1 1 0 0 0
fentl 0 0 0 + 4 4
access 0 0 I o 0 0
creat 0 0 0 0 0 0
unlink 0 0 1 0 o 0
stat 0 0] 0 0 0 0
Istat 0 0 4] o 0 0
Updates 697345 15653680 | 2468995 79283 1755729 82837
Bytes Allocated 28784080 | 571564640 | 84828160 | 5860112 | 56542032 | 5951616
Lines Allocated 1032770 | 20179644 | 3103342 193682 2155784 197321
Bytes Deallocated 28784032 | 571564032 | 84828112 | 5860064 | 56541984 | 5951568
Lines Deallocated 1032768 | 20179624 | 3103340 193680 2155782 197319
Max Depth 2096 6752 2944 6928 496 6960

Table 12: Experimental Data Three Part Two (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.con

221

Parameter tbl troff grops MatrixD Random MatrixF
Max Lines 67 214 95 220 18 222
Matlocs 8358 111204 2912 272 25 272
Bytes Malloc 134125 4179147 398027 56878 3018 39082
Lines Malloc 10517 195988 13534 1872 104 1339
Frees 8491 94622 2939 259 21 259
Jst/Bsr 87547 13078083 1996390 92979 1805614 97333
Jmpri 408316 12553982 1896575 66367 1555577 69363
Leaf Nodes 260465 7884215 1447282 48832 1027860 49230

Table 12: Experimental Data Three Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapnw.manaraa.com

C.3.3 Experiment Three Part Three Data

Parameter hsim mpsdemo Z80sim photon
Cycles 55806372 | 2011710 381870711 83191087
Instructions 54903727 { 1311059 386666663 68854489
IPC 0.983825 | 0.651714 1.012559 0.827667
Two Inst 17036058 326079 122308748 19550530
One Inst 20831611 658901 142049167 29753429
Zero Inst 17938703 | 1026730 117512796 33887128
No Inst 11645308 961439 128065732 25338128
Source Unav 18327059 339936 73244445 20315227
Destination Unav 203166 28731 1204619 1452117
Pipe Full o 0 0 0
Reservation Fuil 202639 923 43111 1861387
DMU B'W 6521239 240069 51512927 9928346
Empty D Slot 161111 93746 5405449 2970476
Branch-Branch 705934 9746 31034 959020
History Full 2 91 9 286
Serialized 1876 921 14 404397
Carry bit 0 0 (] 0
Decode Error 0 0] 0] 0

1 i 3 1
Integer 1 19647960 459071 149193017 25733598
Integer 1 % 358 35 386 374

2 2 2 2
Integer 2 1840305 20712 23754359 2733798
Integer2 % 34 1.6 6.1 4
Load 15133026 | 360982 81327482 15338745
Load % 276 275 21 223
Store 4697732 225279 55589795 10047566

Table 13: Experimental Data Three Part Three

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Parameter hsim mpsdemo 280sim photon
Store % 86 172 144 14.6
Float Add 0 (4] o 819012
Float Add % 1] 1] 0 12
Float Mul 953352 481 o 933456
Float Mul % 1.7 0 0 1.4
Float Div 201380 233 0 355089
Float Div % 04 0 0 0.5
Graph Add o (0] 0 0
Graph Add % 0 o 0 V]
Graph Bit 0 0 0 0
Graph Bit % o 0] 0 0
Cond Branch 8794181 92372 15545027 7667911
Cond Branch % 16 7 4 1.1
Uncond Branch 3634837 151411 61256974 5102040
Uncond Branch % 6.6 11.5 158 74
Trap 952 466 7 36872
Trap % 0 0 0 0.1
Rie 0 0 0] 0
Rte % 0 o] 0 0
Control 2 2 2 86402
Control % 0 4] 0 0.1
Load Latency 22 2.69 229 2.56
Load Clocks 19 209 1.81 1.96
Load hits 1] 0 0 0
Decoupled Loads 110 1683 58 104443
Decoupled Stores 14 68 6 2014
address alias 48 18764 31 449060
Id input full 129 216 4 27096

Table 13: Experimental Data Three Part Three (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

Parameter hsim mpsdemo Z80sim photon
1d output full 0 0 0 0
st reservation full 202510 9707 43107 1834291
Cond store 45 231 85 19762
Inst/Branch $42 538 5.0 539
BTC hits 4695030 28832 11761060 1787460
BTC misses 102294 94775 1726388 3290628
Correct Pred 4538684 46501 5630591 3393402
Incorrect Pred 1787905 25007 178767 1458322
History Depth 1.07 08s 0 091
Flush History 1210393 14486 110 1030677
Flush Stall 0 0 0 o
Accesses 37392961 871047 266854939 48802673
Hits 36992161 713533 258333350 46415435
Stream Hits 148 15164 1835900 540112
Misses 400652 82330 6685689 1847126
Ratio 98.93 90.55 97.49 96.22
Accesses 18925684 579736 136917213 24990683
Hits 18925343 573916 136863222 24831128
Stream Hits 4 204 3 2022
Misses 337 5616 53988 157533
Copybacks 96 3006 12723 67269
Ratio 100 99.03 99.96 9937
Cycles used 3242431 886858 65723579 18411787
Conflicts 65 3634 39954 37695
Bus Utilization 0.058101 | 0.440848 0.17211 0.221319
Accesses 0 (] 0 0
Misses 0 0 0 0
Ratio 0 0 0 0

Table 13: Experimental Data Three Part Three (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

224

225

Parameter hsim mpsdemo 280sim photon
Accesses 0 0 0 0
Misses 0 0 0 0
Ratio 0 0 o 0
exit 4 1 13 1
read 936 14 0 8
write 7 433 0 849
open I 6 0 4
close 0 6 0 4
brk 2 2 2 2
time o 0 o 0
times 0 0 o 0
sysconf 0] 0 0 0
ioctl 0 0 o] 0
Iseek 0 0 0 0
fstat 0 0 o o
getpid 0 0 o 0
fentd 5 4 4 4
access 0 0 0 0
creat 0 0 0 0
unlink 0 0 (4] 0
stat 0 0 (] o
Istat 0] 0 0 0
Updates 2420269 149390 35995867 3396760
Bytes Allocated 72630432 | 2814976 | 1078619344 | 138393872
Lines Allocated 2522357 106408 39719464 4622553
Bytes Deallocated 72630384 | 2814928 | 1078619296 | 138393824
Lines Deallocated 2522355 106406 39719462 4622551
Max Depth 624 1760 768 32432

Table 13: Experimental Data Three Part Three (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

226

Parameter hsim mpsdemo 280sim photon
Max Lines 21 57 29 1017
Mallocs 13 170 10 3730
Bytes Malloc 5280 27520 68221 799360
Lines Malloc 167 927 2133 25160
Frees 0 138 0 4
Jst/Bst 1414232 58731 29464086 1844138
Jmprl 1413595 52856 29464064 1592241
Leaf Nodes 706691 29928 14538581 1188410

Table 13: Experimental Data Three Part Three (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

227
C.4 Experiment Four

C.4.1 Experiment Four Part One Data

Parameter chkbom genbom listbom soelim pic eqn
Cycles 19833537 | 20072188 566440 5925089 | 23826800 | 39396884
Instructions 23628967 | 23739901 516657 6846589 | 22389674 | 41377387
PC 1191364 | 1.182726 | 0.912112 1.155525 | 0939684 | 1.050271
Two Inst 6490009 6519025 148610 2247469 6981401 13028370
One Inst 10648949 | 10701851 219437 2351651 8426872 15320647
Zero Inst 2694579 2851312 198393 1325969 8418527 11047867
No [nst 2352595 2475118 179794 780942 6784653 9790378
Source Unav 8596746 8654412 126185 1637772 6395534 9597650
Destination Unav 22141 21342 3730 992 222698 68910
Pipe Full 0 0 4] 0 0 0
Reservation Full 160155 169647 3941 15669 175118 927953
DMU B/W 2148703 2149175 66520 621275 2002917 2665419
Empty D Slot 35259 46581 25487 349744 608929 1326505
Branch-Branch 16636 18301 9200 264261 504759 1906218
History Full 3633 7756 1a35 1884 43869 20782
Serialized 5687 377 28 1874 7451 60908
Carry bit 0 0 0 0 305 5
Decode Error o 0 0 0 0 0

1 l 1 1 1 1
Integer 1 10696485 | 10748544 194291 2367274 8771892 15309707
Integer 1 % 453 453 376 346 392 37

2 2 2 2 2 2
Integer 2 2105733 2105267 14895 274060 902518 1153707
Integer 2 % 89 89 29 4 4 28

Table 14: Experimental Data Four Part One

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

228

Parameter chkbom genbom listbom soelim pic eqn
Load 6372919 | 6382472 124599 1515116 4834782 8888203
Load % 27 26.9 24.1 2.1 216 215
Store 2178575 | 2206608 62849 896888 2583067 4974610
Store % 92 9.3 122 13.1 115 12
Float Add 0 0 0 0 32849 0
Float Add % 0 o 0 0 0.1 0
Float Mul 4622 2776 2475 0 59956 2758
Float Mul % 0 0 0.5 0 03 0
Float Div 162 791 0 12 34147 18237
Float Div % 0 0 0 0 0.2 0
Graph Add 0 0 0 0 0]
Graph Add % 0 0 0] 0 0
Graph Bit 0 0 0 0 0 0o
Graph Bit % 0] 0 0 0 0 0
Cond Branch 2218637 | 2225732 92514 1249183 3509236 8129441
Cond Branch % 9.4 9.4 179 182 15.7 19.6
Uncond Branch 49169 65042 24931 341614 1657502 2870272
Uncond Branch % 02 03 +8 79 74 6.9
Trap 2663 2667 101 2440 373 30447
Trap % 0 0 4] 0 0 0.1
Rte 0] 0 (] o 0 0
Rte % 0 0 0 0 0 0
Control 2 2 2 2 2 2
Control % o 0 (] 0 0 0
Load Latency 272 274 2.56 268 3.04 254
Load Clocks 203 203 1.98 201 227 2.04
Load hits 0 (4] (] 0 0 1
Decoupled Loads 3961 4313 827 1790 54002 34412

Table 14: Experimental Data Four Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.cor

229

Parameter chkbom genbom listbom soelim pic eqn
Decoupled Stores 2318 2340 21 1008 4980 8377
address alias 843 803 145 257 14709 31249
Id input full 272 2636 252 197 13095 3024
1d output full 0 0 0 0 0 0
st reservation full 156883 167011 3689 15472 162023 924929
Cond store 90 165 87 0 13534 4004
Inst/Branch 10.42 10.36 4.4 382 433 3.76
BTC hits 39806 45462 16809 522739 939980 2880697
BTC misses 11064 21007 8934 4183 328545 532650
Correct Pred 68898 55293 37301 621136 1497323 3935008
Incorrect Pred 25594 24329 15918 96860 T46925 1282914
History Depth 0.67 063 09 267 1.26 144
Flush History 14053 11840 11502 173813 683268 1122425
Flush Stall 0 0 0 0 0 0
Accesses 15064996 | 15116200 348828 4954882 | 15594515 | 27741452
Hits 15042623 | 15078258 333469 4951189 | 15135625 | 27288856
Stream Hits 5333 9389 3266 820 129389 113072
Misses 17040 28553 12093 2873 329501 339524
Ratio 99.89 99.81 96.53 99.94 97.89 98.78
Accesses 8547636 8586113 183636 2241931 7105643 135058+
Hits 8511485 8542526 181964 2238157 6938712 13414912
Stream Hits 142 344 12 13 1713 1970
Misses 36009 43243 1660 3761 165218 88962
Copybacks 20976 25332 930 2901 62654 39908
Ratio 99.58 9.5 9.1 99.83 97.67 99.34
Cycles used 602081 796062 133554 77395 4871091 4022818
Conflicts 3567 5030 902 378 47143 27874
Bus Utilization 0.030357 0.03966 0.235778 | 0.013062 | 0.204437 0.10211

Table 14: Experimental Data Four Part One (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w\w.manaraa.comn

230

Parameter

chkbom

genbom

listbom

soelim

Accesses

Ratio

Accesses

Misscs

Ratio

oclolojo]|o]| o

o|loc|l]o}jQ@)]C]| O

o|]o|]Oo|O|]O]|C

-

fouy

p—

7

T

Bl

open

—

close

p—

brk

time

times

sysconf

Iseek

fstat

getpid

fent

access

ol+|lo|B|o|B|c|lo|lo|nw|BIE]a

creat

stat

o|lo|olo|+|olB|leo|{B|c|lec|e|vw|PlE]|e

oC|lo|oc|]o|+|OC|lOo|lOo|]OC|lOo|Oo]lO]| N

[stat

168

(]

oooooooqoqooo:—u.u.gg—oooooo
=

oooooooNowooonoo§w-oooooo%-

Slo|]o|o|J]lojo]lo|w|lol+]lojolo]lw

Updates

29593

11629

181889

733171

8
i

Bytes Allocated

1216720

483520

7260032

26548016

57520704

Lipes Allocated

41826

16376

270579

948050

1953723

Table 14: Experimental Data Four Part One (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyawwv.manaraa.con

231

Parameter chkbom genbom listbom soelim pic eqn
Bytes Deallocated 1018608 1216672 483472 7259984 | 26947968 | 57520656
Lines Deallocated 33375 41824 16374 270577 48048 1953721
Max Depth 3776 3952 2224 2112 2912 2160
Max Lines 121 126 3 68 96 70
Mallocs 439 603 187 393 4857 6834
Bytes Malloc 355494 378215 9859 33482 251743 150742
Lines Malloc 11312 12025 382 1293 10400 8596
Frees 255 589 2 331 4864 6841
Jst/Bsr 24735 31989 13851 95601 397361 1081712
Jmprl 18532 27508 7586 94575 529167 644857
Leaf Nodes 11105 17585 3469 87786 329458 M5

Table 14: Experimental Data Four Part One (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyzapaw.manaraa.con

232

C.4.2 Experiment Four Part Two Data

Parameter thl troff grops MatrixD Random MatrixF

Cycles 16300602 | 320882214 | 57250369 | 11823795 | 97991711 | 11811652
Instructions 16980002 | 245698439 | 52716443 | 6479078 | 72046618 | 6483479
IPC 1.041679 | 0.765697 | 0.920805 | 0547969 | 0.735232 | 0.548905
Two Inst 5319228 446124 16225976 1961999 21455468 1913516
One [nst 6341546 | 98806191 | 2026491 | 2555080 | 29135682 | 2656447
Zero Inst 4639828 | 148629899 | 20759902 | 7306716 | 47400561 | 7241689
No Inst 4226259 | 112224162 | 14064970 { 1768335 10099958 | 1820279
Source Unav 4049264 | 83065842 | 18577759 | 7307594 | 44627508 | 7320094
Destination Unav 23098 4717865 378274 38112 6427824 42803
Pipe Full 0 0 0 0] o 0
Reservation Full 193226 4440329 604347 104632 350709 94323
DMU Br'W 1135396 | 26834105 | 4526332 358402 6474028 358599
Empty D Slot 652533 7382595 1237035 183875 899179 183174
Branch-Branch 634951 7938780 1429734 54357 655431 30993
History Full 43429 376297 11813 3493 94 2115
Serialized 16145 67694 36174 15585 3000193 17971
Carry bit 2242 83 I ¢] 0 ¢]
Decode Error 0 0 0 o 0] 0]

1 1 1 I 1 1
Integer | 6188956 | 87615035 | 19621693 | 2651052 | 20513166 | 2673609
Integer 1 % 364 357 372 409 285 412

2 2 2 2 2 2
Integer 2 676757 7226191 1398446 195099 3878704 176938
Integer 2 % 4 29 27 3 54 2.7
Load 3472786 60583861 12711461 721943 14079387 715664
Load % 20.5 247 24.1 11.1 19.5 I
Store 2222391 30442157 6143775 362790 6275591 358545

Table 15: Experimental Data Four Part Two

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanw.manaraa.con

233

Parameter tbl trofl grops MatrixD Random MatrixF
Store % 13.1 124 11.7 56 87 55
Float Add 0 95739 4 207708 11801319 214414
Float Add % 0 0 0 32 164 33
Float Mul 4706 486536 19355 796831 5317973 795374
Float Mul % 0 0.2 0 123 74 123
Float Div 1246 157367 139028 274603 570988 274317
Float Div % 0 03 03 42 08 42
Graph Add 0 0 0 0] 0 0
Graph Add % 0 4] 0 0 0 0
Graph Bit 0 0 0 0] 0 o
Graph Bit % 0 1] o 0] 0 0
Cond Branch 3047969 37192991 8996855 1022380 5314469 1020366
Cond Branch % 18 15.1 17.1 158 74 15.7
Uncond Branch 1357119 21264097 3657744 242129 3444961 248756
Uncond Branch % 8 87 6.9 3.7 48 38
Trap 8070 33863 28080 1721 250022 1990
Trap % 0 o] 0.1 0 03 0
Rte 0 o] 0 o 0] 0
Rte ® 0 0 0] 0 o o]
Control 2 2 2 282 600038 3506
Control % 0 0] 0 0 08 0.1
Load Latency 252 3.19 288 24 27 243
Load Clocks 1.98 227 2.16 1.95 228 1.99
Load hits 1 94 1 0 0 0
Decoupled Loads 31281 651949 24269 2704 79 3849
Decoupled Stores 1706 123574 10493 55 5 45
address alias 12751 89862 27872 8558 3699484 9795
1d input full 3131 349520 11488 127 50009 52

Table 15: Experimental Data Four Part Two (Continued)

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

234

Parameter tbl troff grops MatrixD Random MatrixF
1d output full 0 0 0 0 0 0
st reservation full 190095 4090809 592859 104505 300700 94271
Cond store 2974 42461 2291 267 52 583
InstBranch 38s 42 4.17 512 8.3 51
BTC hits T71417 8394910 1976077 234755 1293584 213494
BTC misses 364594 5825941 843495 129430 327863 107871
Correct Pred 1509043 14675540 | 4311025 422653 2526440 $42953
Incorrect Pred 522729 9113209 1833882 229889 1973406 236336
History Depth 1.13 0.68 0.9¢ 1.04 1.97 L.o4
Flush History 404478 4953764 1176633 140526 2610700 142259
Flush Stall 0 0 0 0 0 0
Accesses 11592801 | 171809779 | 367190%4 | 4580568 | 50362771 | 4493260
Hits 11393066 | 162234148 | 35962647 | 4476029 | 50112212 | 4391222
Stream Hits 64607 2436080 182002 28282 50142 30011
Misses 135128 7139551 574445 76257 200417 72027
Ratio RB.83 95.84 98.44 9834 99.6 984
Accesses 5505942 88430287 | 18427536 | 1060697 19413334 | 1050843
Hits 5467890 85608060 18136936 1053522 19413056 1042762
Stream Hits 1454 168773 612 293 4 204
Misses 36598 2653454 289988 6882 274 -
Copybacks 25763 1159115 154530 5069 54 3535
Ratio 9934 97 98.43 99.35 100 9.25
Cycles used 1694327 | 100520399 | 8640023 822430 1606529 T78266
Conflicts 12214 1118318 36343 1797 100 1995
Bus Utilization 0.103943 0313263 | 0.150916 | 0.069557 | 0.016395 0.06589
Accesses 0 o 0 0] 0
Misses 0 0 0] 0 0 0
Ratio 0 o o o 0 0

Table 15: Experimental Data Four Part Two (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

235

Parameter tbl troff grops MatrixD Random MatrixF
Accesses 0 0] 0 0] 0 0
Misses 0 (] (] 0 0 o
Ratio 0 0 (0] 0 0 0
exit 1 1 1 1 1 1
read 33 207 128 0] (0] 0
write 8027 33567 27880 539 0 523
open 0 28 24 (4] 0 0
close 0 15 11 0 0 0
brk 4 10 2 2 2 2
time 0 | 1 0 0 0
times 0 0 o 0 0 0
sysconf 0 0 0 0 0 0
ioctl 3 17 15 0 0 0
Iseek 0 0 1 0 0 0
fstat 2 16 14 0 0 0
getpid 0 1 1 o 0 0
fentl 0 (0] 0 4 + 4
access 0 0 1 Q 0 0
creat 0 0 (] 0 0 0
unlink 0] 0 1 0 0 0
stat 0 0 0 0 0 0
Istat 0 0 0 0 0 0
Updates 542375 10960548 1630769 73405 1300715 78931
Bytes Allocated 24411856 | 457603504 | 64980272 | 5719408 | 48020896 | S850608
Lines Allocated 870811 15876461 2285071 187786 1750764 193473
Bytes Deallocated 24411808 | 457602928 | 64980224 | 5719360 | 48020848 | 5850560
Lines Deallocated 870809 15876442 2285069 187784 1750762 193471
Max Depth 2000 6672 2944 6928 544 6960

Table 15: Experimental Data Four Part Two (Continued)

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyaww.manaraa.cor

236

Parameter tbl troff grops MatrixD Random MatrixF
Max Lines 65 212 95 220 19 222
Mallocs 853 112335 2897 271 25 271
Bytes Malloc 101357 3404779 324299 54278 3018 36482
Lines Malloc 9493 172668 11230 1790 104 1257
Frees 8492 94622 2931 259 21 259
Jst/Bst 341207 8844652 1194219 84127 1578118 88734
Jmprl 324926 7530330 1054853 57054 1328085 59394
Leaf Nodes 229412 4593390 710464 43291 1027836 43545

Table 15: Experimental Data Four Part Two (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

237

C.4.3 Experiment Four Part Three Data

Parameter hsim mpsdemo Z80sim photon
Cycles 50283348 1520725 167066783 | 79217222
Instructions 51084303 1041816 168689520 66831183
IPC 1.015929 | 0.685078 1.009713 0.843645
Two Inst 15421329 253524 49404746 19042478
One Inst 20241645 534768 69880028 28746227
Zero Inst 14620374 732433 47782009 | 31428517
No Inst 8306655 627365 42339559 22816290
Source Unav 17449519 338494 38330256 19696072
Destination Unav 202764 26297 26358 1615221
Pipe Full 0 0 0 0
Reservation Full 203131 17151 1607163 1940029
DMU B/W 6729252 188548 29597500 M4TTS
Empty D Slot 1261735 59278 5086294 2828142
Branch-Branch 705961 7212 394852 971000
History Full 4 898 75 32169
Serialized 970 913 19 38484
Carry bit 0 0 0 0
Decode Error 0 0 o 0

I 1 1 1
Integer 1 18036057 353742 60900967 25022251
Integer 1 % 353 34 36.1 374

2 2 2 2
Integer 2 1840259 31545 7040255 2590613
Integer2 % 3.6 3 4.2 39
Load 14533054 329006 45227783 14940419
Load % 284 316 268 24
Store 4094955 152745 25618314 9622106

Table 16: Experimental Data Four Part Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

238

Parameter hsim mpsdemo z80sim photon
Store % 8 14.7 152 144
Float Add 0 0 0 819012
Float Add % 0 0 0 1.2
Float Mul 953352 473 0 933456
Float Mul % 1.9 0 0 1.4
Float Div 201380 283 0 355089
Float Div % 04 o 0 0.5
Graph Add 0 0 0 0
Graph Add % 0 0 0 0
Graph Bit 0 0o 0 0
Graph Bit % 0 0 0 0
Cond Branch 8593374 92893 11018485 7690562
Cond Branch % 168 89 6.5 115
Uncond Branch 2830918 80661 18883707 4734401
Uncond Branch % 55 77 112 7.1
Trap 952 466 7 36872
Trap % 0 0 0 0.1
Rte 0 0] 0 0
Rte % 0 (] 0 0
Control 2 2 2 86402
Control % 0 ¢] 0 0.1
Load Latency 22 265 235 256
Load Clocks 1.91 207 1.8 1.95
Load hits 0 1 0 0]
Decoupled Loads 46 1445 60 56478
Decoupled Stores 4 159 9 1393
address alias 11 11239 202876 429379
Id input full : 1 124 0 27157

Table 16: Experimental Data Four Part Three (Continued)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

Parameter hsim mpsdemo Z80sim photon
1d output full 0 0 o 0
st reservation full 203130 17027 1607163 1912872
Cond store 92 2 0 17882
Inst/Branch 447 6 564 538
BTC hits 4482854 22280 1947368 1754159
BTC misses 2137 58221 1196724 3115997
Correct Pred 4430714 48060 5672446 3404260
Incorrect Pred 1694909 26372 400402 1442415
History Depth 1.25 091 046 0.96
Flush History 1313863 16593 185409 1049650
Flush Stall 0 0 0 0
Accesses 35505152 707856 122731748 | 47856614
Hits 35500003 642142 120334503 | 45819188
Stream Hits 1965 12726 49118 505323
Misses 3184 52988 1906087 1532103
Ratio 99.99 9251 98.45 96.8
Accesses 17719963 473935 70827655 24125609
Hits 17719686 468007 70824856 23958864
Stream Hits 1 85 6 1809
Misses 276 3843 2793 164936
Copybacks 42 3351 2485 70079
Ratio 100 98.77 100 99.32
Cycles used 28767 583852 17649974 15824245
Conflicts 63 3261 149 45780
Bus Utilization 0.000572 0.38393 0.105646 0.199758
Accesses 0 0 0 0
Misses o 0 0 0
Ratio 0 0] 0 0

Table 16: Experimental Data Four Part Three (Continued)

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Parameter hsim mpsdemo 280sim photon
Accesses 0 0 0 0
Misses 0 0 o 0
Ratio 0] 0 0 0
exit 1} 1 1 1
read 936 14 (¢] 8
wrile 7 433 0 849
open I 6 0 4
close 0 6 0 4
brk 2 2 2 2
time 0 0 0 0
times 0 0 0 0
sysconf 0 0 o 0
joctl 0 0 0 0
Iseek] 0 0 0
fstat 0 0 0 0
getpid 0 4] 0 0
fenu 5 4 4 4
access 0 0 o 0
creat o] 0 0 0
unlink 0 0 0 0
stat 0 0 (4] 0
Istat 0 0 (¢] 0
Updates 1616351 75194 9008479 2972452
Bytes Allocated 51728528 | 1610176 548799536 13044668

8
Lines Allocated 1718438 58715 18022579 4319303
Bytes Deallocated 51728480 | 1610128 548799488 | 13044664

0
Lines Deallocated 1718436 58713 18022577 4319301

Table 16: Experimental Data Four Part Three (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Parameter hsim mpsdemo z80sim photon
Max Depth 560 1920 784 32448
Max Lines 19 65 27 1017
Mallocs 13 172 10 3730
Bytes Malloc 5280 27572 68221 799360
Lines Malloc 167 929 2133 25160
Frees o 137 0 4
Jst/Bsr 1112760 33433 6833472 1704913
Jmp rt 1011636 27570 6833468 1453952
Leaf Nodes 505713 15252 4805653 1112391

Table 16: Experimental Data Four Part Three (Continued)

C.5 Experiment Five

Parameter listbom MatrixD | mpsdemo 280sim
Clocks 552156 HT734458 | 1456505 16486548
9

Table 17: Experimental Data Five

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Bibliography

[1] Todd M. Austin, Scott E. Breach and Surindar S. Sohi, “Efficient Detection of All
Pointer and Array Access Errors,” Proceedings of the ACM SIGPLAN ‘94 Con-
ference on Programming Language Design and Implementation, June 1994.

[2] Tim Korson and John D. McGregor, “Understanding Object-Oriented: A Unify-
ing Paradigm,” Communications of the ACM, September 1990, vol. 33, no. 9,
Sept. 1990.

[3] Howard D. Owens, Baxter F. Womack and Mario J. Gonzalez, “Software Error
Classification Using Purify,” Proceedings of International Conference on Soft-
ware Maintenance, Monterey, California, IEEE Computer Society Press, 1996,
pp 104-113.

[4] B. Boehm, “Software and its impact: A quantitative assessment,” Datamation,
May 1973.

(5] B. Henderson-Sellers and J. Edwards, “The Object-Oriented Systems Life Cy-
cle”, Communications of the ACM, vol. 33, no. 9, Sept. 1990.

[6] F.Gryna, “Quality costs,” Juran’s Quality Control Handbook, 4th ed. (New York:
McGraw-Hill, 1988).

(71 B.P. Lientz and E. B. Swanson, “Software maintenance: a user/management tug
of war,” Data Management, pp. 26-30, Apr. 1979.

[8] StephenT. Knox, “Modeling the cost of software quality,” Digital Technical Jour-
nal pp. 9-17, vol. 5, no. 4 (Fall 1993).

[9] Bertrand Meyer, Object-oriented software construction (Prentice Hall, 1988).

[10] J. Hager, “Software Cost Reduction Methods in Practice”, [EEE Transactions of
Software Engineering, vol. 15, no. 12, Dec. 1989.

[11] Mark Sullivan and Ram Chillarege, “Software defects and their impact on system
availability - a study of field failures in operating systems,” Digest 21st Interna-
tional Symposium on Fault Tolerant Computing (Montreal, June 1991).

[12] Mark Sullivan and Ram Chillarege, “A comparison of software defects in data-
base management systems (DB2, IMS) and operating systems (MVS),” Digest
22nd International Symposium on Fault Tolerant Computing (Boston, July 1992).

[13] Reed Hastings and Bob Joyce, “Purify: fast detection of memory leaks and access
errors,” Proceedings of the Winter Usenix Conference, Jan 1992.

[14] Purify user’s guide, release 2.1, Pure Software Inc. 1993.

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

243

[15] SunOS 5.0 multithread architecture, a white paper, SunSoft, 1991.

[16] Custom cell synthesizer (CCS) version 2.5 research prototype design specifica-
tion: as built, MCC technical report number: CPS-108-92(Q) (May, 1992).

{17} Custom cell synthesizer (CCS) version 2.5 research prototype release CCS sourc-
es & sun4 binaries magnetic tape, and installation instructions, MCC technical
report number: CPS-106-92(Q) (May, 1992).

[18] Custorn cell synthesizer (CCS) version 2.5 research prototype user s guide, MCC
technical report number: CPS-107-92(Q) (May, 1992).

[19] P. Banerjee, J. Rahmeh, C. Stunkel, S. Nair, K. Roy, and J. Abraham, “An evalu-
ation of system-level fault tolerance on the Intel hypercube multiprocessor”, Co-
ordinated Science Laboratory, University of Illinois.

[20] InterViews reference manual, version 3.1-beta, Stanford University 1992.
[21] John Vlissides, Steve Tang and Charles Brauer, Ibuild user s guide, 1992.

[22] Solaris Application Level Multithreading Seminar: Participant’s Guide, Sun Mi-
crosystems, February 1993.

[23] Natraj Arni and KayLiang Ong, LDL user's guide, edition 2.0, MCC technical re-
port number Carnot-012-93(P).

[24] Carnot sofitware release 2.0, MCC technical report number Carnot-028-93(Q).
{25] Jan-Simon Pendry and Nick Williams, The amd reference manual, March 1991.

[26] Jose Nelson Amaral, “A parallel architecture for serializable production systems”,
Ph.D. qualifying exam, The University of Texas at Austin, June 1993.

[27] Anurag Acharya, “PPL: an explicitly parallel production language for large scale
parallelism”, Proceedings of the IJAI-93 Workshop on Production systems and
their innovative applications (Chambery, August 93).

(28] Eric Allman, “Mail systems and addressing in 4.2bsd”, Usenix, Jan 1983.

[29] Burton J. Smith, “A Pipelined Shared Resources MIMD Computer,” Proceedings
1978 International Conference on Parallel Processing, 1978, pp-6-8.

[30] Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, 1984.

[31] IHenry M. Levy, Capability-Based Computer Systems, Digital Press, 1984.

[32] Viktors Berstis, “Security And Protection Of Data In The IBM System/38,” Pro-
ceeding of the 7th Int. Symposium on Computer Architecture, 1980, pp. 245-252.

[33] Merle E. Houdek, Frank G. Soltis, and Roy L. Homan. “IBM System/38 support
for capability-based addressing,” Proceedings of the 8th Symposium on Computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

Architecture, pp. 341-348, 1981.

{34] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally, “Hardware Support
for Fast Capability-based Addressing,” Proceedings of the 6th International Con-
Sference on Architectural Support for Programming Languages and Operating
Systems, 1992.

[35] Richard S. Wiener and Lewis J. Pinson, An Introduction to Object-Oriented Pro-
gramming and C++, Addison-Wesley, 1988.

[36] Edward F. Gehringer and Robert P. Colwell “Fast object-oriented procedure calls:
Lessons from the intel 432, The 13th Annual International Symposium on Com-
puter Architecture, pp. 92-101, 1986.

[37] Fred J. Pollack, George W. Cox, Dan W. Hammerstrom, Kevin C. Kahn, Konrad
K. Lai, and Justin R. Rattner, “Supporting Ada memory management in the
IAPX-432," Proceedings of the Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 117-131, 1982.

{38] J. Kaiser, E. Nett, and R. Kroger “Mutabor - An Intelligent Memory Management
Unit for Object Oriented Auchitecture supporting Error Recovery,” Proceedings
Fault-Tolerant Computing Systems 3rd International GI/ITG/GMA Conference,
1987, pp. 61-71.

{39] J. Kaiser, E. Nett, and R. Kroger “MUTABOR - A Coprocessor Supporting Ob-
ject-Oriented Memory Management and Error Recovery,” Proceedings of the
Twenty-First Annual Hawaii International Conference on System Sciences, 1988,
pp. 20-29.

{40] Jorg Kaiser, “MUTABOR, A Coprocessor Supporting Memory Management in
an Object-Oriented Architecture,” JEEE Micro, October 1988, 8(5) pp. 30-46.

[41] Umakishore Ramachandran and M. Yousef Amin Khalidi, “A Design of a Mem-
ory Management Unit for Object-base Systems,” Proceedings 1989 IEEE Inter-
national Conference on Computer Design, 1989, pp. 512-517.

[42] Umakishore Ramachandran and M. Yousef Amin Khalidi, “A Measurement-
based Study of Hardware Support for Object Invocation,” Software-Practice and
Experience, September 1989, 19(9) pp. 809-828.

[{43] M Yousef Amin Khalidi, Hardware Support for Distributed Object-based Sys-
tems, Ph. D. thesis, Georgia Institute of Technology, 1989.

[44] Gerry Kane, MIPS R2000 Processor Architecture, Prentice Hall, 1988.

[45] M. V. Wilkes, “Hardware Support for Memory Protection,” Proceedings of the
Symposium on Architectural Support for Programming Languages and Operat-
ing Systems, 1982, pp 107-116.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyzapanw.manaraa.com

245

[46] R. S. Fabry, “Capability-Based Addressing,” Communications of the ACM, July
1974, 17(7), pp 403-412.

[47] 80386 Programmer's Reference Manual, Intel, Inc., 1986.

[48] John L. Hennessy and David A. Pattersonr, Computer Architecture A Quantitative
Approach, Morgan Kaufmann Publishers, 1989.

[49] John Backus, “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs,” Communications of the ACM, Au-
gust 1978, 21(8), pp 613-641.

[50] Keith Diefendorff and Michael Allen, “Organization of the Motorola 88110 Su-
perscalar RISC Microprocessor,” IEEE Micro, Vol. 12, No. 2, April 1992, pp. 40-
63.

[51] MC88110 Superscalar RISC Microprocessor User’s Manual, Motorola, Inc.,
1992.

[52] Robin W. Edenfield, Michael G. Gallup, William B. Ledbetter, Jr., Ralph C. Mc-
Garity, Eric E. Quintana, and Russell A. Reininger, “The 68040 Processor: Part 2,
Memory Design and Chip Verification,” IEEE Micro, Vol. 10, No. 3, June 1990,
pp- 22-35.

(53] MC88110 RISC Instruction-Level Simulator Kit User’s Guide, Motorola, Inc.
1991.

[54] Michael J. Phillip, “Simulated Performance of the Motorola 88110 RISC Micro-
processor,” Internal Motorola Report, Motorola, Inc., 1991.

[55] MVME197 Premier Performance Single Board Computer Data Sheet, Motorola,
Inc., 1993.

[56] Quentin Barnes, MCGTools Bill of Materials, Motorola internal software, Motor-
ola, Inc., 1995.

[57] Gary S. Brown, 32-bit CRC, 1986.

[58} Leif Lonnblad, Paul Reasing, Irwin Sheer, and Dag Bruck, Class Library for
High Energy Physics, a collection of software, version 0.15, 1994.

[59] Howard D. Owens, Asim - A Configurable Simulator for Evaluating MMU Per-
Jformance, Motorola internal software, Motorola, Inc., 1992.

[60] OSE, version 4.2b1, Dumpleton Software Consulting Pty Limited, 1995.
[61] Quentin Barnes, TRS80 Simulator, 1995.

[62] Nick Sayer, Z-80 emulator, 1985.

[63] Bill Dimm, FeynDiagram, version 2.2, [FTP: hepth.cornell.edu}, 1993.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

246

[64] Jongjung Woo, Hybrid Approach to Memory Organization, Ph.D. Dissertation,
The University of Texas at Austin, 1993.

[65] Electronic Signals and Transmission Protocols, ISO/IEC 7816-3 Standard for In-
tegrated Circuit Cards with Contacts, International Organization for Standardiza-
tion and the International Electrotechnical Commission, 1989.

[66] Henry Lieberman, “The Debugging Scandal and What to Do About It,” Commu-
nications of the ACM, Vol. 40, No. 4, April, 1997, pp. 27-29.

[67] Mirowslaw Malek, Mohan Guruswamy, Mihir Pandya, and Howard Owens, “Se-
rial and Parallel Simulated Annealing and Tabu Search Algorithms for the Trav-
eling Salesman Problem,” Annals of Operations Research, Vol. 21, 1989, pp 59-
84.

[68] Howard Owens, “Computer Memory: Abacus to DRAM,” IEEE Potentials, De-
cember, 1989, pp. 32-35.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.comn

VITA

Howard Dewey Owens was born in Freeport, Texas, on June 28, 1958, the son
of Herman Dewey Owens and Flossie Owens Hartman. After completing his work at
Brazosport High School, Freeport, Texas, in 1976, he entered Brazosport College at
Lake Jackson, Texas. In September, 1977, he transferred to Lamar University at
Beaumont, Texas. In the summers of 1979, 1980, and 1981 he was employed by the
Dow Chemical Company, Freeport, Texas. He received the degree of Bachelor of
Science in Electrical Engineering from Lamar University in May, 1981. In September,
1981, he entered The Graduate School of The University of Texas and was employed
as a teaching assistant for two semesters. He received the degree of Master of Science
in Engineering from the Department of Electrical Engineering, The University of
Texas at Austin, in August, 1983. Since that time he has been employed by Motorola,
Inc., where his most recent position is Staff Engineer in the Advanced Computer
Architecture Lab, Corporate Software Center. In January, 1987, he again entered the
Graduate School at The University of Texas to continue his studies while remaining a
Motorola researcher. His publications include “Serial and Parallel Simulated
Annealing and Tabu Search Algorithms for the Traveling Salesman Problem” [67],
“Computer Memory: Abacus to DRAM?” [68], and “Software Defect Classification
Using Purify” [3].

Permanent Address: 1808 Romeria Drive, Austin, Texas 78757

This dissertation was typed by the author using FrameMaker® on a Macintosh®.

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\\w.manaraa.con

IMAGE EVALUATION
TEST TARGET (QA-3)

& <
B ,/ﬁnwu, .mo &
5] N \A//.\ﬂ ¢
N\ P
//o.
m%
ddaa - i
= g7 U
21l =1 =1 3
_ e = o
X
N\
| A
\//// “ Yep
b ~ o

© 1993, Appiied Image, Inc., All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

